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Generation of Orthogonal Boundary-Fitted

Coordinate Systems

Roderick M. Coleman

Computation, Mathematics, and Logistics Department
David W. Taylor Naval Ship Research and Development Center

Bethesda, Maryland 20084




ABSTRACT

A method is presented for computing orthogonal boundary-fitted
coordinate systems for geometries with coordinate distributions specified
on all boundaries. The system which has found most extensive use in
generating boundary-fitted grids is made up of the Poisson equations
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The functions P and Q provide a means for controlling the spacing and

density of grid lines in the coordinate system. Since all calculations are

done in the computational plane, the dependent and independent variables in

Equation (1) are interchanged, giving the usual transformed equations
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The condition for orthogonality, i.e., £ = constant lines perpendicular to
n = constant lines, is B =0, because
=0 x = -y /x
B = E/YE Yo%,
which is equivalent to
1/yx T x
n = constant £ = constant

As a generating system based entirely on B, we consider

= = 3
By =8, =0 3)

which can have an orthogonal solution only when B = 0 at the corners of the
computational region. An iterative solution of the generating system given

in Equation (3) is applied successfully to several geometries. While questions
remain concerning the existence and uniqueness of orthogonal systems, the
generating method presented here adds to the available, useful techniques for

constructing these systems.
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Figure 1 provides a comparison of two grids generated for a square
region with nonuniform boundary coordinate spacing in both vertical and
horizontal directions. The nonorthogonal mesh shown in Fig. la was
generated using the Poisson system given by Equation (2) with P=Q=0.
Equation (2) was replaced with central difference formulae and the resulting
system was solved by successive overrelaxation (SOR). The orthogonal mesh
shown in Fig. 1b was obtained using Equation (3) as a generating system.
Equation (3) was expanded and each derivative was replaced with the
appropriate central difference formula. Again, the resulting system was

solved by SOR iteration.
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Two 21 x 21 girds generated for a simply-connected region with
one convex boﬁndary are shown in Figure 2. Fig. 2a shows a nonor thogonal
coordinate system generated by Equation (2) with P = Q = 0 (a Laplace
system); Fig. 2b shows a coordinate system generated by Equation (3).
Note the orthogonality of the coordinate lines intersecting the curved

upper boundary in Fig. 2 and the resultant bending of these lines in the

interior.
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Figure 3




Figure 3 shows a region similar to that of Fig. 2 with a concave
rather than convex curved boundary. As before, Fig. 3a shows a Laplace-
generated grid and Fig. 3b shows a B-generated grid obtained using
Equation (3). The orthogonal mesh must have rather fine spacing near
the concave upper boundary to accommodate the curvature. To verify that
the fine mesh spacing in Fig. 3b is due to the geometry and not to a
singularity in the transformation, we have refined the mesh as seen in

the next figure.
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Figure 4 compares two different grids, one coarse with 1681 points
and the other fine with 6561 points, generated for the concave region.
The fact that corresponding grid lines are in about the same position in
both meshes confirms that the coarse discretization yields a good
approximate solution to the exact problem. A further confirmation comes
from consideration of the Jacobian at the midpoint of the upper boundary.
The value of the Jacobian computed on the coarse mesh is nonzero and
agrees very well with the value computed on the fine mesh. There is no

indication of a zero Jacobian anywhere in the region.
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To demonstrate some of the problems that can arise, we attempted
to generate an orthogonal mesh on a region similar to the previous one
but with greater curvature of the concave boundary. The grid shown in
Fig. 5a was generated by a Laplace system and the unacceptable grid in
Fig. 5b was generated by the system of Equation (3). To verify that a
mesh with crossing lines can also be produced by a Poisson system, we
computed directly the forcing functions P and Q using Equation (2) with
x and y as given in Fig. 5b. We then solved Equation (2) iteratively for

x and y using this P and Q, and regenerated the grid of Fig. 5b.
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As the final example, we considered a doubly-connected region
bounded by concentric circles as shown in Fig. 6. Since this region is
symmetric with respect to any line passing through the center, each grid
was generated for half the region and reflected in the line of symmetry.
The symmetry line was treated as a boundary with fixed coordinate
distribution, thus assuring that B = 0 at the corners of the compptational
region. The spacing on the outer boundary, but not on the inner boundary,
was uniform. Had the spacing on both boundaries been uniform, the grid
produced by the Laplace generating system (Fig. 6a) would have been the
usual polar coordinate system which is orthogonal. In Figs. 6a and 6b, the
line of symmetry was taken as a horizontal line through the center of the
figure. The mesh of 6a was used as an initial guess for the iterative

procedure used to obtain the mesh of 6b.







In Fig. 7, we show a B-generated grid computed for the same doubly-
connected region used in the previous figure. As before, the mesh of
Fig. 6a was used for the initial guess, but in this case the line of
symmetry was taken as a vertical lime through the center. Interestingly,
the two orthogonal grids generated for the same physical region (Figs. 6b
and 7) are quite dissimilar because different points were held constant

after the same initial guess.



OF BODY CONFORMING GRIDS FOR 3-D
AXTAL TURBOMACHINERY FLOW CALCULATIONS

by Djordje S. Dulikravich




ABSTRACT

A fast algorithm has been developed for accurately generating boundary
conforming, three-dimensional, consequtively refined, computational grids
applicable to arbitrary axial turbomachinery geometry. The method is based
on using a single analytic function to generate two~dimensional grids on a
number of coaxial axisymmetric surfaces positioned between the hub and the
shroud. These grids are of the "0"-type and are characterized by quasi-
orthogonality, geometric periodicity and an adequate resolution throughout
the flowfield. Due to the built-in additional nonorthogonal coordinate
stretching and shearing, the grid lines leaving the trailing edge of the
blade end at downstream infinity, thus simplifying the numerical treatment
of the three-dimensional trailing vortex sheet.

*NASA - National Research Council Research Associate, NASA-Lewis
Research Center, Computational Fluid Mechanics Branch, Cleveland, Ohio
44135, Presently a visiting research scientist at DFVLR-Gottingen
Universitadt, F.R. Gemmany.




The main objective of this work is to develop a fast algorithm for gen-
erating body-conforming three-dimensional computational grids. An equally
important objective is to preserve the high accuracy of the discretized re-—
presentation of the solid boundaries. When analyzing steady flows throcugh
turbomachinery rotors and stators, it is sufficient to consider a single
rotationally periodic segment of the flowfield. This segment is a doubly
infinite strip stretching in the direction of the axis of rotation. The
strip has a constant angular width of 27/B where B is the total number
of blades. Each blade has an arbitrary spanwise distribution of taper,
sweep, dihedral and twist angle. The local airfoil shapes can vary in an
arbitrary fashion along the blade span. The rotor hub and the duct (or
shroud) can have different arbitrary axisymmetric shapes.

Such an arbitrary three—dimensional physical domain (Fig. 1) is first
discretized in the spanwise direction by a number of coaxial axisymmetric
surfaces which are irregularly spaced between hub and shroud.




The major problem in generating the spanwise suriaces is an accurate

determination of the intersection contours between the irregular blade sur—

face and the coaxial axisymmetric surfaces cutting the blade.

The coordi-

nates of the points on these contours are defined by fitting cubic splines

along the blade and interpolating at the radial stations corresponding to

each axisymmetric surface r = const.
s
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The two-dimensional grid should have the following features: (a) grid
cells should conform with the contour shape and the shape of the perlodlc
boundaries ab and cd, (b) grid should be geometrically periodic in the
g'-direction meaning that the gr1d joints along the periodic boundary ab
must have the same respective x'-coordinates as the grid points along the
periodic boundary cd, (c) grid lines should not be excessively non-
orthogonal in the vicinity of solid boundaries, (d) a grid line emanating
from the trailing edge should end at downsteam infinity and (e) grid cells
should be concentrated in the regions of high flow gradients.
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Once the shape of the intersection contour on a particular cutting
axisymmetric surface is known, the proble;\r} becomes one of discretizing a
doubly-connected two—dimensional domain w = x + 16.




A grid with these properties can be most easily generated with the use
of a single analytic function. One such function is

n QY
3=e181n(m z)+e_i81n(1-*mfi>;0<m<l

x

m+ 2z 1+ mz
where w = x+ 18 and z =E + in. This complex function maps conformally
a unit circle with a slit in the middle whose end*pgints are situated at
z = im onto the cascade of straight slits in the y-plane. Each slit has a
length 25 where

Lg = 4(?05 8 sinh-1 ZE.EEEiﬁ + sin B sin—1 EE—EZE§§>
l1-m 1l +m

The slits are spaced 2w cos 3 distance apart, where R is the stagger
angle of the cascade of slits.
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The unit circle is "unwrapped" using elliptic polar coordinates (2,4)
resulting in a deformed rhomboidal shape which is then sheared in the hori-

zontal and vertical direction (2) resulting in a rectangular (X,Y) computa-
tional domain.
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The transformation of an actual cascade of airfoils will result in a
cascade of unit circles which are even more deformed. Consequently, more
nonorthogonality will be introduced in the transformation by additional
shearing of coordinates. A uniform grid in the (X,Y) plane which is symmet-
rically spaced with respect to the Y-axis, remaps back into the physical
(x,8) plane as an "0"-type boundary conforming grid. The actual radial
coordinates are obtained by fitting cubic splines along the elliptic mesh
lines and interpolating at a number of axial stations at which the radius of
the corresponding axisymmetric surface is known.
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The present method is equally applicable to the blades with blunt (or
rounded) , wedged and cusped trailing and/or leading edges.
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A disadvantage of the present method is that it is not applicable for
the very thick, highly stagered blades which are very closely spaced. This
problem can be resolved by using a different form of the mapping function;
for example, one which mapps a cascade of circles into a cascade of circular
arcs instead of a cascade of straight slots.
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A sample run shows that it takes 10 seconds of CPU time on an IBM 3033
to generate (x, y, z) coordinates of two 3-D grids and to write them on two
separate disks (5). The first (coarse) grid consisted of 27x9x8 points and
the second (refined) grid has 51x15x14 poirts.
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BOUNDARY-FITTED COORDINATES FOR REGIONS WITH

HIGHLY CURVED BOUNDARIES AND REENTRANT BOUNDARIES

U, GHIA AND K.N. GHIA
UNIVERSITY OF CINCINNATI, CINCINNATI, OHIO

A procedure has been developed, using the differential-
equation apprcach, for generating boundary-fitted coordinates
for regions with highly curved boundaries as well as reentrant
boundaries, such as those encountered in breaking surface
waves. The resulting coordinates are nearly orthogonal and
can provide adequate resolution even in the reentrant region.
Consistent treatment of end boundaries and the use of a
systematic initialization scheme and advanced implicit
numerical solution techniques make the procedure highly
efficient. The method developed for implicit enforcement of
the periodicity boundary condition should be beneficial in
the analysis of turbomachinery flow applications.



CONSISTENT TREATMENT OF END-BOUNDARIES

C=0 curves of
n=constant
p—

' 7TTrr'n-0
A A (4=0) Tz

A limiting form of the coordinate ecuations at the
end-boundary is solved to determine, prior to the complete
solution, the point distribution at this boundary, con-
sistent with the interior distribution. This procedure
avoids discontinuities in the transformed-coordinate
derivatives near the end-boundaries, while maintaining
Dirichlet boundary conditions for the transformation.




SOLUTION OF LIMITING EQUATION AT END-BOUNDARY

Yy
3
+ =
nn Q ¢n 0
where
2
o = I LI expl-(n-n?/(2p)]
k=1 "k
a; <0, la, | = a,
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INITIALIZATION PROCEDURE

GEOMETRIC INITIALIZATION
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INITIALIZATION BY LOCALLY SELF-SIMILAR SOLUTION




SURFACE-ORIENTED COORDINATES FOR DUCT WITH HIGHLY
CURVED BOUNDARIES

BOUNDARY-ORIENTED COORDINATES FOR A TYPICAL SURFACE WAVE
WITH REENTRANT BOUNDARIES




IMPLICIT ENFORCEMENT OF PERIODICITY BOUNDARY CONDITION

DIFFERENTIAL EQUATION:

o) 4+ ap = b

PERIODICITY BOUNDARY CONDITIONS:

SOLUTION PROCEDURE Let ¢ = Af + Bg + h

£'' + af = 0 g'"' +ag =0 h'' + ah =b
with
Then,

Af1 + Bgl + h1 = A

] 1} T

Afo + Bgo + h0 =B

so that
L T ) 1
A = [h,(1-g4) +h, g;1/0[(1-£;) (1-g4) - £, ;]

0

0 911

(1)
]

thy(A-£,) + £, h, 1/[(1-£,) (1-g4) - £
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TABLE 1. EFFECT OF MULTIGRID (MG) ITERATION TECHNIQUE ON
CONVERGENCE OF COORDINATE SOLUTION FOR CASCADE
WITH EASILY APPLICABLE PERIODICITY

. Work Units of CPU

Method Grid Resp. Finest Grid Seconds Remarks

ADI (65x17) 100 37.69 uniform spacing
SIip (65x17) 53 11.96 uniform.spacing
MG-SIP (65x17) 6.5 2.08 uniform spacing
ADI (65 x17) 95 36.67 nonuniform spacing
SIP (65x17) 25 6.33 nonuniform spacing
MG-SIP (65x17) 7.5 2.32 nonuniform spacing
MG-SIP (129 x 33) 6.4 8.44 nonuniform spacing

TABLE 2. CONVERGENCE OF COORDINATE SOLUTION FOR CASCADE
GEOMETRY WITH PERIODICITY USING A STRONGLY
IMPLICIT PROCEDURE (SIP) AND MULTIGRID (MG)

TECHNIQUE
. Work Units of CPU

Method Grid Resp. Finest Grid Seconds Remarks

SIP (161 x 33) 81.00 =100.0 uniform spacing.
convergence is one
order less than for
nonuniform spacing.

MG~SIP (161 x 33) 7.48 10.79 uniform spacing

MG-SIP (161 x 33) 8.23 11.49 nonuniform spacing

MG-SIP (81x17) 8.88 4.02 nonuniform spacing
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CONCLUSIONS

Generation of coordinates for regions with highly curved
boundaries requires suitable initial conditions; locally
self-similar equations provide an excellent non-iterative
initial solution.

Generation of appropriate Dirichlet boundary conditions even
with non-zero forcing functions enhances solution convergence
rate.

Use of implicit numerical solution procedures together with
the multigrid iteration technique constitutes an effective
method for solution of the nonlinear governing differential
equations with large number of grid points.

An adaptive coordinate distribution is formulated for the
breaking surface-wave problem with a reentrant boundary;

solutions are presently being obtained for a free surface
wave starting from an initial sinusoidal form and under-

going the breaking phenomenon.




A Two Dimensional Mesh Verification Algorithm

R. Bruce Simpson
Department of Computer Science
University of Waterloo
Waterloo, Ontario, Canada.

Abstract

A finite element mesh is commonly represented in a program by

i 5 3 Snmtdanmac [N,
lists of data di.e, vertex cgordin lement d

In general, these lists describe a collection of triangles. Whether the
triangles form proper mesh for a region or not, i.e. whether they 'tile’
a region, is data dependent in a non obvious way. This paper specifies

a set of ccnditions on the triangles (i.e. on the list data) which ensure
that the triangles tile a region and which also can be verified by an
algorithm which is referred to in the title, and which is claimed to be

of reasonable efficiency.



Basic List Representation of a Mesh

The mesh verification algorithm assumes that the collection
of triangles is described by three lists as shown in the following

small example.

Vertex Coordinates Element incidences Boundary References
Index x-y coordinates index vertex indices index references

1 2.00 1.00 1 1 2 3 1 1 3

2 2.00 2.00 2 2 4 3 2 2 2

3 1.00 1.00 3 2 5 4 3 3 1

4 1.00 2.00 5 6 4 4 4 2 dindicates a

5 2.00 300 6 5 6 1 boundary

6 1.00 3.00 8 6 6 6 2 edge starts

Lz 2.00 4.00F 910 1 7 7 3 at —>b

8 1.00  4.00 n ¥ €& 10 2 1 g 8§ 1 ——+

9 3000 1.00 \/ ¥9 1112 5 o 9 3

10 3.00 2.00 A /10 12 ,7 10 1

11 3.00 3.00 [ 11 13921 9 11 [T 1l

12 3.00 4.00 ! \4 12 14 10 9N2 I R Y

13 4.00 1.00 | 13 14 15 10 i3 13 1 *

14 4,00 2.00 bolag 15 11 10 1 14 2 )

15 4.00 3.00 115 15 16 11 15 15 1 ,,\

16 4.00 4.00 b1 16 16 12 11 16. 16 1 ‘
Ao l‘?
to /
to / i
| Y |
( 3 "

9 1@ @ @ /
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6 Yo 16 /
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CONDITIONS

C 1) THE TRIANGLE VERTICES ARE SPECIFIED IN COUNTER CLOCKWISE ORDER

VG, K

Va4, « V@,

€2) LR THE ITH =6k oF E (K) IS THE ONLY EDGE JOINING ITS
END POINTS (BOUNDARY ELEMENT)
OR THERE IS EXACTLY ONE ELEMENT, E (%) HAVING THE SAME
EDGE. IN THIS LATTER CASE, THE DIRECTIONS OF THIS
LINE SEGMENT AS EDGES OF £ (k) anD E (2) musT BE
DIFFERENT,

E &

C 3) No BOUNDARY EDGE INTERSECTS MORE THAN ONE ELEMENT, EXCEPT
AT ITS END POINTS.

C4) A VERTEX CAN HAVE AT MOST ONE BOUNDARY EDGE DIRECTED AWAY
FROM IT,



IMPLICATIONS

1) MesH BOUNDARY EDGES FORM A SET OF DISJOINT, ORIENTED, SIMPLE CLOSED
CURVES
Cl, C2, e s CK = MESH BOUNDARY CURVES

2) EACH CURVE OF BOUNDED INTERIOR DEFINES A CONNECTED REGION. THE
BOUNDARY OF THIS REGION IS COMPOSED OF MESH BOUNDARY CURVES

e X

(AssuME 1 CURVE OF ROUNDED INTERIOR - Cl)

Derine R = /S) (INTERIOR OF )

=1 (CONNECTIVITY K)

N.
DR = L5 E )
=1

4) Ir P € R, P 1S NOT AN ELEMENT EDGE

"“——> P LIES IN EXACTLY ONE ELEMENT,




Small Example Invalid Mesh on Hollow Square

@ @ @ ©

6 10 TA
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® @
, 5 @@ »
3 3
@ g @
2 63 12
1 7
I " )
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Coordinates of vertex 13 changed to (2.5, 2.5)

Section of Mesh Verification Algorithm Detailed Error Report

MESH VERIFICATION ERROR

INTERSECTING BOUNDARY EDGES -

EDGE FROM VERTEX 13 AT ( 2.50, 2.50) TO VERTEX 9 AT ( 3.00,
EDGE FROM VERTEX 2 AT ( 2.00, 2.00) TO VERTEX 10 AT ( 3.00,

MESH VERIFICATION ERROR
INTERSECTING BOUNDARY EDGES -
EDGE FROM VERTEX 14 AT ( 4.00, 2.00) TO VERTEX 13 AT (
EDGE FROM VERTEX 10 AT ( 3.00, 2.00) TO VERTEX 11 AT (
FROM BDSCAN, NO. OF BOUNDARY CURVES= 2
MESH VERIFICATION ERROR

ELEMENT 11 APPEARS TO HAVE VERTICES LISTED IN WRONG ORDER

X= 3.000000E 00 Y= 1.000000E 00
X= 2.500000E 0O Y= 2.500000E 00
X= 4.000000E 00 Y= 2.000000E 0O
DET = -2.000000E 00

MESH CHECK ENCOUNTERED 3 ERRORS

1.00)
2.00)

2.50)
3.00)
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Conformal Mappings of Multiply Connected Regions

onto Regions with Specified Boundary Shapes

by Andrew N. Harrington
School of Mathematics

Georgia Institute of Technology

a

£
. -> -
J J

f conformal f(aj) = Aj’ Y r

The author has developed and implemented a numerical procedure to
compute the conformal mapping of a given n-tuply connected region onto
a region with any specified boundary shapes and with several possible
normalizations. If we start with a region whose outer boundary is a
rectangle, we may arrange that the outer boundary of the image region is
also a rectangle, and the vertices map to vertices. We may chose the

inner boundaries to map to rectangles or to any other shapes.




We may also consider unbounded regions and find a mapping normalized
at ® 2z + 0(1/z). We may chose the boundaries of the image region to be

circles or any other shapes.




Method

Though we may specify boundary shapes and orientations arbitrarily,
the proper translation and magnification parameters must be calculated to
determine the image domain and the mapping. For example, in order to find
a conformal mapping between n-tuply connected regions R and S containing
with f(o) = oo, we must satisfy conditions on GR and GS’ the analytic
completions of the Green's functions for R and S with pole at co. We must

have

[

GR(rj) = GS(Sj) j=1,2, ... n-

where rj and Sj’ j=1, 2, ... n-1, are the critical points for G, and GR

S
labeled in the figure. Using Symm's method to approximate Green's functions

one may easily calculate the appropriate parameters. Ihen Gc(f(z)) = G, (z).

The dotted curves are the level curves of Re GR and Re GS which

branch at the critical points.



FINITE DIFFERENCE GRID GENERATION
BY MULTIVARIATE BLENDING
FUNCTION INTERPOLATION™

by

Peter G. Anderson
Lawrence W, Spradley

Computational Fluid Dynamics Section
Lockheed-Huntsville Research & Engineering Center
Huntsville, AL, 35807

*This work was supported, in part, by NASA-Langley Contracts NAS1-15341,
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ABSTRACT

The General Interpolants Method (GIM) code solves the multi-
dimensional Navier-Stokes equations for arbitrary geometric domains.
The geometry module in the GIM code generates two- and three-
dimensional grids over specified flow regimes, establishes boundary
condition information and computes finite difference analogs for use in
the GIM code numerical solution module. The technique can be classified

as an algebraic equation approach.

The geometry package uses multivariate blending function interpola-
tion of vector-values functions which define the shapes of the edges and
surfaces bounding the flow domain., By employing blending functions
which conform to the cardinality conditions the flow domain may be mapped
onto a unit square (2-D) or unit cube (3-D), thus producing an intrinsic
coordinate system for the region of interest. The intrinsic coordinate
system facilitates grid spacing control to allow for optimum distribution

of nodes in the flow domain.

The GIM formulation is not a finite element method in the classical
sense. Rather, finite difference methods are used exclusively but with the
difference equations written in general curvilinear coordinates. Trans-
formations are used to locally transform the physical planes into regions
of unit cubes. The mesh is generated on this unit cube and local metric-
like coefficients generated. Each region of the flow domain is likewise
transformed and then blended via the finite element formulation to form
the full flow domain. In order to treat ''completely-arbitrary' geometric
domains, different transformation functions can be employed in different
regions, We then transform the blended domain to physical space and solve
the Cartesian set of equations for the full region. The geometry part of the
problem is thus treated much like a finite element technique while integration

of the equations is done with finite difference analogs.



BUILDING BLOCK CONCEPT

The development is done in local curvilinear intrinsic coordinates based

on the following concepts:

e Analytical regions such as rectangles, spheres, cylinders,
hexahedrals, etc., have intrinsic or natural coordinates.

e Complex regions can be subdivided into a number of
smaller regions which can be described by analytic
functions. The degenerate case is to subdivide small
enough to use very small straight-line segments.

e Intrinsic curvilinear coordinate systems result in
constant coordinate lines throughout a simply
connected, bounded domain in Euclidean space.

® The intersection of the lines of constant coordinates
produce nodal points evenly spaced in the domain.

e Intrinsic curvilinear coordinate systems can be pro-
duced by a univalent mapping of a unit cube onto the
simply connected bounded domain.

Thus, if a transformation can be found which will map a unit cube uni-
valently onto a general analytical domain, then any complex region can be

piecewise transformed and blended using general interpolants,

Consider the general hexahedral configuration shown. The local intrinsic

coordinates are Nys Mps M3 with ori.gin at point P,. The shape of the geometry
is defined by

e Eight corner points, f’i
e Twelve edge functions, Ei

e Six surface functions, Si

This shape is then fully described if the edges and surfaces can be specified

as continuous analytic vector functions §i(x,y, z), fi(x,y, z),




BUILDING BLOCK CONCEPT

b. Edge Designations

c. Surface Designations



GENERAL INTERPOLANT FUNCTION

Based on the work of Gordon and Hall we have developed a general
relationship between physical Cartesian space and local curvilinear intrinsic

coordinates, This relation is given by the general trilinear interpolant shown

on the adjacent figure.

In this equation, }—_( vector is the Cartesian coordinates

X(nl,nz,n3)
X(My,momg) = | Ying,n,,mg)
z(ny>mysm3)

and S‘i’ E; are the vector functions defining the surfaces and edges, respectively,
and f’-i are the (x,y, z) coordinates of the corner points. Edge and surface func-

tions that are currently included in the GIM code are the following:

e EDGES (Combinations of up to Five Types)

Linear Segment

Circular Arc

Conijc (Elliptical, Parabolic, Hyperbolic)
Helical Arc

Sinusoidal Segment

e SURFACES (Bounded by Above Edges)

Flat Plate
Cylindrical Surface
Edge of Revolution

This library of available functions is simply called upon piecewise via input

to the computer code.

With this transformation, any point in local coordinates n 1> N2» N3 can
be related to global Cartesian coordinates x,y,z. Likewise any derivatives
of functions in local coordinates can be related to that derivative in physical

space,




GENERAL INTERPOLANT FUNCTION

z(nl’nzin3) =
— — ) —d —
(l-nl)55+r)156+ (l-r,Z) SZ+ nZS

+ (1-773)51 + n3S
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INTERNAL FLOW GRID
(Axisymmetric Rocket Nozzle)

The grid shown was used to compute the flow in a model of the Space
Shuttle engine using the GIM code. The mesh is stretched in the radial direc-
tion to cluster points near the wall and stretched axially to place points near
the throat of the nozzle. Only a portion of the complete grid is shown for
clarity and illustration. The grid shows the general format used by the GIM

code for internal, two-dimensional flows in non-rectangular shapes.




INTERNAL FLOW GRID

cnnusni@EB1EE

o)
=
N
o
=
- u
e \\:\
> 144
S T
(e
.m
| - TH
k-3 HH
= sva
m -
12 N
x 1111
< (IIIIENN |
T
it




EXTERNAL FLOW GRID
(Two-Dimensional Blunt Body Flow)

This figure shows a polar-like grid used for computing external flow
over a blunt body. The body surface is treated inviscidly, and thus does
not require an extremely tight mesh. The outer boundary is the freestream
flow. The grid illustrates the GIM code technique for two-dimensional ex-

ternal flows using a polar-like coordinate system.




EXTERNAL FLOW GRID
(Two-Dimensional Blunt Body Flow)




EXTERNAL FLOW GRID
(Non-Orthogonal Curvilinear Coordinates)

The nodal network for the external flow over an ogive cylinder illustrates
the capability of the GIM code geometry package to stretch the nodal distribu-
tion. The grid is very compact in the leading edge region and greatly expanded
in the far field areas. The axial points follow the body surface and could gen-
erally be called ""body-oriented coordinates' in the nomenclature of the litera-
ture. The radial grid lines are not necessarily normal to the lateral lines or
to the body surface. The GIM code, through its '"nodal-analog" concept can

operate on this general non-orthogonal curvilinear grid.




EXTERNAL FLOW GRID
(Non-Orthogonal Curvilinear Coordinates)
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THREE-D IMENSIONAL GRID
(Simple Rectilinear Coordinates)

Supersonic flow in expanding ducts of arbitrary cross section is a common
occurrence in computational fluid dynamics, This figure illustrates a simple
grid for a three-dimensional duct whose cross section varies sinusoidally with
the axial coordinate. The '"top'! wall and the "front'' wall have this sinusoidal
variation while the ""bottom'' and '"back'' walls are flat plates. The grid shown

was used to resolve the expanding-recompressing supersonic flow including the

intersection of the two shock sheets.




THREE-D IMENSIONAL GRID
(Simple Rectilinear Coordinates)




THREE-D IMENSIONAL GRID
(Pipe Flow in a 90 deg Elbow Turn)

There are numerous flow fields of interest which contain a sharp turn
inside a smooth pipe. The GIM code has treated certain of these for applica-
tion to jet deflector nozzle flow in VTOL aircraft., The portion of a grid shown

in the adjacent figure was used for this calculation.

The 90 deg elbow demonstrates the capability to model three-dimensional
non-Cartesian geometries. The internal nodes were emitted for clarity. The
elbow grid was generated by employing edge-of-revolution surfaces with circular

arc segments as the edges being revolved.




THREE-DIMENSIONAL GRID
(Pipe Flow in a 90 deg Elbow Turn)
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GRID FOR SPACE SHUTTLE MAIN ENG INE
(Hot Gas Manifold Geometry Model)

The recent problems encountered with the Space Shuttle main engine
tests have resulted in a GIM code analysis of the system. The '""hot gas mani-
fold" is a portion of this analysis for the high pressure turbopump system.

The grid shown in the adjacent figure was used for this calculation. Only a
small number of nodes are shown for clarity; the full model consists of approx-
imately 14,000 nodes. The extreme complexity of this geometry illustrates

the necessity of using a GIM-like technique. Transforming this case to a
square box computational domain is, of course, impossible. The results of

the GIM code analysis agrees qualitatively with flow tests that have been run

on the hot gas manifold.

Hot Gas Manifold Configuration




GRID FOR SPACE SHUTTLE MAIN ENGINE
(Hot Gas Manifold Geometry Model)
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SUMMARY

Finite difference grids can be generated for very general con-

figurations by using multivariate blending function interpolation.

The GIM code difference scheme operates on general non-

orthogonal curvilinear coordinate grids.

This scheme does not require a single transformation of the
flow domain onto a square box. Thus, GIM routines can indeed

treat arbitrary three-dimensional shapes.

Grids generated for both internal and external flows in two and
three dimensions have shown the versatility of the algebraic

approach,

The GIM code integration module has successfully computed
flows on these complex grids, including the Space Shuttle

main engine turbopump system.

Plans for future application of the code include supersonic flow
over missiles at angle of attack and three-dimensional, viscous,
reacting flows in advanced aircraft engines. Plans for future
grid generation work include schemes for time-varying networks

which adapt themselves to the dynamics of the flow.
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Component-Adaptive Grid Embeddng
E. H. Atta

Lockheed-Georgia Company



Introduction:

One of the major problems related to transonic flow prediction
about realistic aircraft configuration is the generation of a suitable
grid which encompasses such configurations. 1In general, each aircraft
component (wing, fuselage, nacelle) requires a grid system that is
usually incompatible with the grid systems of the other components;
thus, the implementation of finite-difference methods for such
geometrically-complex configurations is a difficult task.

In this presentation a new approach is developed to treat such a
probiem. The basic idea is to generate different grid systems, each
suited for a particular component. Thus, the flow field domain is
divided into overlapping subdomains of different topology. These
grid systems are then interfaced with each other in such a way that
stability, convergence speed and accuracy are maintained.



Model :

To evaluate the feasibility of the present approach a two-dimensional
model 1is considered (figure 1). The model consists of a single airfoil
embedded in rectangular boundaries, representing an airfoil in a wind
tunnel or in free air. The flow field domain is divided into two
overlapping subdomains, each covering only a part of the whole field. The
inner subdomain employs a surface-fitted curvilinear grid generated by an
elliptic grid-generator (ref. 1), while the outer subdomain employs a
cartesian grid. The overlap region between the two subdomains is bounded

by the outer boundry of the curvilinear grid and the inner boundary of the
cartesian grid.

1. Holst, T. L., "Implicit Algorithm for the Conservative Transonic Full-
Potential Equation Using an Arbitrary Mesh," AIAA J., Vol. 17, No. 10,
October 1979
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Figure 1.

Composite grid for an airfoil




Approach:

The figure shows the two subdomains (A,B) of the flow field;
each has a grid adapted to suit its geometry. The flow in both
subdomains is governed by the transonic full-potential equation.
While a Neuman-type boundary condition is used at the inner bound-
ary of subdomain B (overlap inner boundary), a Dirichlet-type
boundary condition is used at the outer boundary of subdomain A
(overlap outer boundary). These boundary conditions are updated
during the solution process. The implicit approximate factoriza-
tion scheme is used in both grid systems. The code of ref. 1 is
modified to fit into the present scheme.

The solution process is performed in cycles, starting by
solving for the flow field in subdomain A, then switching after a
number of iterations to solve for the flow field in subdomain B.
During each cycle the overlap boundary conditions are updated by
using two dimensional second order Lagrangian interpolation scheme.
This process is then repeated until convergence is achieved in both
subdomains.




|

Figure 2.

Grid topology for the different subdomains



Comparison with a homogeneous grid:

The results of the present method are compared with the results

obtained from using one homogeneous grid for the entire flow field

(ref. 1). 1In all the test cases considered, a standard grid with

(31 x 147) points and a circular outer boundary located 6 chord-
Tength away from the airfoil are used.




Figure 3. Uniform grid for an airfoil (ref. 1)



Computed Results:

Results of the present method are compared with the results
obtained from the code of ref. 1. Figures 4 and 5 display the
pressure coefficient distribution for a NACA-0012 airfoil. The values
of the different parameters affecting the performance of the numerical
shceme are listed in table I. The results are in good agreement for
both subcritical and supercritical cases; savings in computing time are
achieved by reducing the size of the flow field covered by the curvi-
Tinear grid (subdomain A).

Code of Ref. 1 Present Method
TAIR Code

Curvilinear grid 31 x 147 15 x 147 21 x 147
Cartesian grid 30 x 30 30 x 30
% cpu time reduction
as compared to TAIR 30% 10%
Code
location of subdomain 6 chord- 6 chord-
B outer boundary length length
Location of subdomain 1 chord- 2 chord-
B inner boundary length Tength
Location of subdomain 1 chord- 4 chord-
A outer boundary length length
number of cycles for 9 10
convergence
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Figure 4. Comparison of pressure coefficient for NACA-0012 (M~ = .75,
a = 0.)



Code of Ref.

1

Present Method

TAIR Code
Curvilinear grid 31 x 147 18 x 147 14 x 147
Cartesian grid 30 x 30 50 x 50
% cpu time reduction
as compared to TAIR 20% 10%
Code
lTocation of subdomain 6 chord- 6 chord-
B outer boundary length length
location of subdomain 1 chord- 1/4 chord-
B inner boundary length Jength
Tocation in subdomain 2 chord- 1 chord
A outer boundary lTength length
number of cycles for 12 15

convergence
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Figure 5. Comparison of pressure coefficient for NACA-0012 (M= = .8,
a=0.)




Flow Field Topology :

The extent of the overlap region between the different grids and
the relative size of each subdomain are the main factors affecting
the accuracy and convergence speed of the present scheme. The figure
shows the flow field topology for several test cases. In these cases
the overlap extent and subdomain sizes are varied to determine their
optimum values that will minimize the computing effort, while maintain-
ing a reasonable accuracy.
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Figure 6. Flow-field topology with different grid-overlap
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Figure 6. Flow-field topology with different grid-overlap (cont'd)




Overlap arrangement:

Test Cases with different grids-arrangement are compared to
determine the optimum choice for the extent of the overlap region.
A work factor w [number of iterations for convergence x number
of grid points (curvilinear grid)] is taken as a measure of the
computing effort. Numerical results show that increasing the ex-
tent of the overlap region decreases the number of iterations for
convergence, however, this also increases the computing effort.
To minimize the computing time the cartesian grid should overlap
15-25% of the curvilinear grid, also the inner boundary of the
cartesian grid should not be located less than 0.25 chord-length
away from the airfoil.



Figure 7. Effect of over]ap)parameters on work factor w (NACA-0012,
Mo = .8, a = 0.




Computed Results:

The use of nonoptimal parameters for grids arrangement (overlap
extent, relative grid sizes) can produce inaccurate results and/or
The Peaky pressure coefficient distribution
shown in the figure is corrected by increasing the extent of the

slow down convergence.

overlap region

Code of Ref. 1

Present Method

TAIR Code
Curvilinear grid 31 x 147 10 x 147 15 x 147
Cartesian grid 30 x 30 40 x 40
location of subdomain 6 chord- 6 chord-
B outer boundary length Tength
location of subdomain 1/4 chord- 1/4 chord-
B inner boundary
location of subdomain 1.5 chord- 1 chord-
A outer boundary
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Computed Results:

Figures 9 and 10 display the pressure coefficient distribution
for two 1ifting cases. The evolution of circulation, and hence
1ift, is slowed down as the solution process alternates between the
different grids. This dealt with by decreasing the number of iter-
ations performed in each grid.

Code of Ref. 1

TAIR Code Present Method
Curvilinear grid 31 x 147 15 x 147
Cartesian grid 30 x 40
% cpu time reduction as 399
compared to TAIR Code °
location of subdomain B 6 chord-length
outer boundary
location of subdomain B
inner boundary 1 chord-length
location of subdomain A _
outer boundary 3 chord-length
1ift coefficient 0.334 0.337
number of cycles for 16
convergence




CPF‘

%
I.Ob .5

.O O homogeneous grid

B ® @ composite grid

® %

L
bF 0.
qO
4+ ..
@)
o®° .O.Qo ®
.2" ® .O q
O %e S
® o% °
O © i 1 1 ‘ho X ]
e 2 M .6 »
%
Al g
' °
@)

O ®
HE
bl

Figure 9. Comparison of pressure coefficient for NACA-0012 (M= = .63,
a = 2°)




Code of Ref. 1

TAIR Code Present Method
Curvilinear grid 31 x 147 21 x 147
Cartesian Grid 30 x 30
% cpu time reduction as 5o
compared to TAIR Code i

location of subdomain B

outer boundary 6 chord-length

location of subdomain B

inner boundary 2 chord-Tength

location of subdomain A

outer boundary 4 chord-length
1ift coefficient 0.574 .584
number of cycles for 14

convergence
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Figure 10. Comparison of pressure coefficient for NACA-0012 (Mw = .75,
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Errors in Sonic line position :

Should the shock wave extend into the overlap region, the
interpolation process can produce errors in the shock location
and strength. Comparisons of the results of the present method
with those of a homogeneous grid shows that the maximum relative
error did not exceed 1.5%.
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Conclusion:

A method for interfacing grid systems of different topology is
developed. This offers a new approach to the problem of transonic
flow prediction about multiple-component configurations. The method
is implemented in a 2-D domain containing two grid systems of differ-
ent topology. The numerical scheme in the present method proved to
be stable and accurate. Savings in computer time and/or storage is
achieved by the proper choice of the overlap region between the differ-
ent grids.




A Simple Numerical Orthogonal Coordinate

Generator for Fluid Dynamic Applications

by
Randolph A. Graves, Jr.
OAST Aerodynamics Office

NASA Headquarters
Washington, DC




Abstract

An application of a simple numerical technique
which allows for the rapid construction of
orthogonal coordinate systems about two dimen-
sional and axisymmetric bodies is presented.

This technique which is based on a "predictor-
corrector” numerical method is both simple in
concept and easy to program. It can be used

to generate orthogonal meshes which have unequally
spaced points in two directions. These orthogonal
meshes in their transformed computational plane
are, however, equally spaced so that the
differencing for the metric coefficients and the
fluid dynamic equation terms can be easily
determined using equally spaced central finite
differences. Solutions to the Navier Stokes
equations for flow over blunt bodies with

reverse curvature are presented. The coupling

of the time dependent fluid dynamic equations

and the coordinate generator worked well with

no undersirable effects noted.
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Flowfield Geometrical Relationships

The numerically generated orthogonal coordinates
are determined from the original cartesian coordinate
systems description of the body surface and outer
boundary. Taking the origin of the X,Y system as
lying inside the body to be described, the surface
distance &, which forms one of the transformed
orthogonal coordinates, can be easily calculated by
defining £ as zero at origin of the region of
interest and increasing to unity at the end of the
region (nondimensionalized surface distance). The
other orthogonal coordinate, n, is taken as zero on
the body surface and as unity on the outer boundary.
Thus the region of interest is transformed into a
nondimensional square

dil .






Level Line Construction

The level lines between the outer boundary and the
body surface can be constructed arbitrarily, however,
the easiest approach is to construct the level lines
along straight lines connecting corresponding points
on the body and the outer boundary. The mesh points
on the outer boundary are not the final mesh points
but initial values used only to set up the level lines.
The actual mesh points will result from the numerical
generation of the orthogonal normal lines. The spacing
of the level lines is arbitrary and highly stretched
meshes can be easily constructed.
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Normal Line Construction Technique

Once the level lines have been determined, the normal
lines are constructed numerically so that an orthogonal
system is defined. The approach to the construction of
the normal lines is the one given by McNally which uses
a simple "predictor-corrector" technique analogous to
the trapezoidal integration method of numerical inte-
gration. 1In this technique, the solution is first
predicted from the level line at a known point by using
the Euler method. Once the predicted point on the next
level line is obtained, the slope at that point is calcu-
lated and a new predicted point is obtained using this
slope. The actual solution is then a combination of
these two solutions, i.e. the final X,Y values are an
average of the predicted and corrected ones.







Typical Coordinate Mesh Construction

Starting on the body, the normal line construction
technique proceeds point by point along a level
line until all normals on that level have been
constructed. The solution then proceeds to the
next level and the process is continued until the
outer boundary is reached. Thus the complete

mesh system is numerically generated in a simple
straight forward, non iterative, process. Since
the computational plane (£,n) is an equally spaced
rectangular region, the metric coefficients can be
determined from the completed mesh system using
equally spaced finite difference relations. Fourth
order accurate difference relations are recommended
as they provide for smoothly varying metric coeffi-
cients.
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Shock and Sonic Line

Solutions to the laminar flow Navier-Stokes equations
were obtained for flow over bodies with blunted noses,
including reverse curvature. These bodies were
generated using the following cubic forebody generator,
_ 2 3
X=X, +A) y° +A,y
where Xodetermines the nose offset while the coefficients

A; and Ay are determined such that the forebody nose
séction joins smoothly to the conical flank. This

solution was run for a free stream Mach number of 10.33
and Xpo=.4. The shock shape and sonic line are typical
of the solution for bodies with very blunt nose regions.
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Converged Coordinate System

The converged coordinate system shown for Xep=.4 is
composed of 15 transverse stations and 31 normal

stations. The normal direction spacing is highly
stretched to provide resolution for the boundary layer.
There is only mild stretching in the transverse
direction to provide for improve stagnation region
resolution. There were no undesirable effects noted
in the coupling of the viscous flow calculations with
the coordinate generation.



A THREE-DIMENSIONAL BODY-FITTED
COORDINATE SYSTEM FOR FLOW FIELD
CALCULATIONS ON ASYMMETRIC NOSETIPS

DarRrYL W. HALL

Science AppLicATIONS, INC,
CompuTATIONAL FLuiD Dynamics Division
(215) 687-5080




ABSTRACT

This presentation describes a three-dimensional body-fitted coordi-
nate system developed for use in the calculation of inviscid flows over
ablated, asymmetric reentry vehicle nosetips. Because of the potential
geometric asymmetries, no standard coordinate system (e.g., spherical,
axisymmetric reference surface-normal) is capable of being closely aligned
with the nosetip surface. To generate a 3-D, body-fitted coordinate
system an analytic mapping procedure is applied that is conformal within
each meridional plane of the nosetip; these transformations are then
coupled circumferentially to yield a three-dimensional coordinate system.
The mappings used are defined in terms of "hinge points", which are
points selected to approximate the body contours in each meridional
plane. The selection of appropriate hinge points has been automated to
facilitate the use of the resulting nosetip flow field code.



PROBLEM DEFINITION

CALCULATION OF SUPERSONIC/HYPERSONIC INVISCID FLOWS OVER ASYMMETRIC ABLATED
REENTRY VEHICLE NOSETIPS

ASYMMETRIC ABLATED NOSETIP SHAPE

APPROACH

e FINITE-DIFFERENCE SOLUTION OF UNSTEADY EULER EQUATIONS

e STEADY FLOW SOLUTION SOUGHT AS THE ASYMPTOTIC LIMIT OF
UNSTEADY FLOW




PROBLEM DEFINITION

The goal of this effort is the development of a procedure for cal-
culating supersonic/hypersonic inviscid flows over asymmetric ablated
reentry vehicle nosetips. These asymmetric shapes, such as illustrated
in this figure, result from asymmetric transition on the nosetip, which
occurs at the Jower altitudes during reentry (i.e., below 50 KFT). Be-
cause these shapes occur in the high Reynolds number, turbulent regime,
with thin boundary layers, an inviscid solution is capable of accurately
predicting the pressure forces on the nosetip. The nosetip flow field
solution is also required to provide the required initial data for after-
body calculations; this coupling of nosetip and afterbody codes allows
accurate prediction of the effects of the nosetip shape on the afterbody
flow field.

The flow field code developed is a finite-difference solution of
the unsteady Euler equations in "non-conservation" form (i.e., the de-
pendent variables are the logarithm of pressure, P, the velocity compo-
nents, u,v,w, and the entropy, s). In this approach the steady flow
solution is sought as the asymptotic limit of an unsieady fiow, starting
from an assumed initial flow field.



COORDINATE SYSTEM REQUIREMENTS

OPTIMUM COORDINATE SYSTEM FOR NUMERICAL FLOW FIELD CALCULATIONS
IS BODY-ORIENTED
COORDINATE TRANSFORMATION SOUGHT THAT:

1.) ALIGNS COORDINATE SURFACES WITH BODY

SURFACE

2.) IS ANALYTIC (SOLUTION OF PDE'S NOT REQUIRED

TO DEFINE TRANSFORMATION)

3.) CAN BE READILY AUTOMATED (TO MINIMIZE INPUTS
REQUIRED FROM USER)




COORDINATE SYSTEM REQUIREMENTS

It is well known that accurate numerical calculation of fluid flows
requires the use of a coordinate system closely aligned with the principal
features of the flow. For the nosetip problem this requirement would be
satisfied by a coordinate system which closely follows the body shape and,
hence, the streamlines of the flow. Because of the asymmetric nosetip
geometries being considered, standard coordinate systems (e.g., spherical,
axisymmetric reference surface-normal) are incapable of being aligned with
the nosetip surface at all points. Thus, a coordinate transformation is
sought that will align the coordinate system with an arbitrary nosetip
geometry. By requiring the transformation to be in analytic form, the
need of solving partial differential equations to define the transformation
can be avoided. Finally, the transformation should be in a form that
readily lends itself to automated definition, minimizing the inputs re-
quired of a user of the code.




COORDINATE TRANSFORMATION

(x,y,¢) CYLINDRICAL COORDINATES IN PHYSICAL SPACE

(£,n,6) COORDINATES IN TRANSFORMED SPACE

TRANSFORMATION OF CIRCUMFERENTIAL COORDINATE NOT REQUIRED
(NOSETIPS INITIALLY AXISYMMETRIC); ASSUME TRANSFORMATION
TAKES THE FORM

£ =£(X,Y,0)

n=n (xay9¢)

IN A MERIDIONAL PLANE (¢ = CONSTANT), THE TRANSFORMATION

REDUCES TO

£ (x,y)

Y
1

n(x,y)

=
"




COORDINATE TRANSFORMATION

The nosetip geometry is defined in an (x,y,¢) cylindrical coordinate

system, and a mapping to a (£,n,8) transformed coordinate system is sought.

Since current reentry vehicle nosetips are initially axisymmetric (prior
to ablative shape change), it is assumed that nosetip cross-sections re-
tain some "axisymmetric” character during reentry. Thus, no transforma-
tion of the circumferential coordinate is required, and © = ¢ is assigned.
(This transformation can readily be generalized to 6 = f(¢) if required
for other applications of this approach.) Within a ¢ = constant merid-
ional plane, the transformation reduces to the two-dimensional form
£=E(x,y)s n = n(x,y). Conformal transformations from the z = x+iy to
theg = £+in plane are desirable, ensuring that an orthogonal (£,n) grid
maps back onto an orthogonal grid in the (x,y) plane.



DEFINITION OF TRANSFORMAT ION

INDEPENDENTLY IN EACH MERIDIONAL PLANE, DEFINE A SEQUENCE
OF CONFORMAL TRANSFORMATIONS
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DEFINITION OF TRANSFORMATION

The approach used to define the coordinate transformations is a
modification of the "hinge point" approach of Moretti*. The mapping
is defined as a sequence of conformal transformations of the form
R
J+1,J
where zj = xj +iyj (j = 1 is physical space) and hi,j is the ith hinge
point in the z; plane. The hinge points in the physical (z1) plane are
selected to approximately model the body geometry. By mapping the
hinge points sequentially onto the horizontal axis, the image of the
body surface will then be a nearly horizontal contour.

Zj+1"1=[2j—h

*Moretti, G., "Conformal Mappings for Computations of Steady, Three-
Dimensional, Supersonic Flows," Numerical/Laboratory Computer Methods
in Fluid Mechanics, ASME, 1976.
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SEQUENCE OF TRANSFORMATIONS

In the ij.mapping of the sequence, the transformation is centered
around the hinge point hj+1,j. The mappings have the property of keep-
ing the hinge points, hj j zif j+1) on the horizontal axis, while mapping
the hinge point hj+2, j onto the horizontal axis. Thus, after JA trans-
formations, all JA+2 "hinge points in the JA+1 space will 1ie on the
horizontal axis. (Each mapping in this sequence may be considered a
"point-wise Schwarz-Christoffel" transformation.) This figure illustrates
the sequence of transformations for JA = 3.



TRANSFORMATIONS - CONTINUED

MAP CENTERLINE ONTO VERTICAL AXIS WITH

) 1/2
2342 = (Zgpe1 ~ N2,0A41)
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TRANSFORMATIONS - CONTINUED

In order to establish a grid suitable for flow field calculations
when the image of the body contour is a nearly horizontal surface, it is
desirable to have the image of the centerline external to the body lie
along the vertical axis. This is achieved using an additional conformal
transformation, centered around the second hinge point, of the form

) 1/2
Zonez = (Zgaer = M2 gae1) 7

The last transformation is a simple stretching (which is also conformal):
L =E*in =azg,

(This stretching is used in the calculation procedure along the center-
line.) This figure illustrates the body contour resulting in the z-plane
for the case of a sphere with JA = 3, where the body surface is defined
as n = b(g).



COMPUTAT IONAL TRANSFORMATION

DESIRE GRID POINTS EQUALLY SPACED IN & ALONG BODY, INn BETWEEN
BODY AND SHOCK, AND IN & CIRCUMFERENTIALLY
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COMPUTATIONAL TRANSFORMATION

For the flow field calculation it is desirable to have equally
spaced grid points. Thus, a transformation to a computational coordinate
system (X,Y,Z) is used, in which grid points are equally spaced circum-
ferentially in 6, longitudinally in £ within each meridional plane, and
in n between the body and the shock. It is important to note that the
(X,Y,Z) system is not orthogonal, and that the computational transforma-
tion varies with time as the bow shock position varies during the time-
dependent calculation. These sketches illustrate the computational grids
resulting in a meridional plane in both physical (z = x+iy) and trans-
formed (z = £+in) space for a typical ablated nosetip contour (with the
shock layer thickness exaggerated for clarity).




PARAMETERS OF THE TRANSFORMATION

REQUIRED IN WRITING GOVERNING EQUATIONS IN TRANSFORMED

COORDINATES
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CIRCUMFERENTIAL PARAMETERS OF THE TRANSFORMATION

c¢,g¢ CAN BE EVALUATED ANALYTICALLY IF EACH MERIDIONAL
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POLATING FUNCTIONS FOR hy j(¢)

ALTERNATIVELY, EVALUATE FROM TAYLOR SERIES EXPANSIONS:

Ly-51-9(25-24)

% 7 5T e T T om0
2
_ 979179 °(z;-2y)
% 7T 60,

( )y > (X-8%,Y,2), (0 )y » (X+8X,Y,Z) IN COMPUTATIONAL MESH




PARAMETERS OF THE TRANSFORMATION

In transforming the governing equations from physical to the (X,Y,Z)
computational coordinates, certain derivatives of the transformation are
required. Because the transformation has been defined in analytic form,
these derivatives can readily be evaluated analytically and are functions
only of the hinge point locations. Within a meridional plane (¢ = constant),
the required derivatives are g = 3z/3z and ¢ = 3(log g)/3z. Circumferen-
tially, the independent transformations in each meridional plane can be
coupled to produce a three-dimensional transformation by assuming that
hinge point locations can be expressed as hj, (¢) The required circumfer-
ential parameters of the transformation, Z and g¢» can be evaluated
analytically if each meridional plane has %he same number of hinge points
and assuming the form of interpolating functions for hj ,j(¢). Alterna-
tively, it has been found to be sufficient to evaluate ¢4 and g¢y from
Taylor series expansions using data at computat1ona1 (X, $ mesh points,
with the forms of the resulting expressions shown in the f1gure



AUTOMATIC GENERATION OF HINGE POINTS
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AUTOMATIC GENERATION OF HINGE POINTS

To simplify the application of this coordinate transformation to the
asymmetric nosetip flow field problem, the selection of hinge points that
define the transformations has been automated. Within each meridional
piane to be computed, body normals are constructed at points equally
spaced in wetted length along the body profile. The hinge points are then
selected to lie a distance & inside the body along these normals. By re-
lating 6 to any convenient scale factor for a nosetip geometry, the only
input required of the user of the code is the number of hinge points to
be used. The locations of the first two hinge points (i.e., those that
lie on the x axis) are the same in each meridional plane, in order to
simplify the treatment of the centerline. Typically, no more than nine
hinge points per meridional plane (JA = 7) are necessary for the nosetip
flow field problem.



TREATMENT OF CENTERLINE
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TREATMENT OF CENTERLINE

The greatest complication encountered in the use of this 3-D coordi-
nate transformation is the extra care that must be taken in treating the
grid points on the centerline. Since the transformations in each merid-
ional plane are independent, the scale factors g = 3z/dz along the
centerline will not be the same in each meridional plane. Thus, one
computational grid point at the centerline will represent different physical
points for each value of ¢ . To minimize these discrepancies, the stretch-
ing transformation ¢ = azjp+p is used to ensure that the images of the
first hinge point are coincident in all meridional planes. The remaining
discrepancies are small enough that simple linear interpolations can be
used to account for differences in the scale factors.

In addition to the mapping complications along the centerline, the
governing equations in cylindrical coordinates are singular along y = 0.
This difficulty has been avoided by using a Cartesian (x1,x2,x3) coordinate
system for the centerline analysis. The required Cartesian derivatives
can be expressed in terms of the radial derivative 9/3y in cylindrical
coordinates for certain values of ¢, as shown in this figure. The only
restriction resulting from this analysis is that computational planes must
be located at ¢ = 0, n/2, w, and 3u/2.



RESULTING FLOW FIELD CODE

CM3DT (CONFORMAL MAPPING 3-D TRANSONIC)

NOSETIP FLOW FIELD CODE

o IDEAL OR EQUILIBRIUM REAL GAS THERMODYNAMICS
e PITCH AND YAW CAPABILITY
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RESULTING FLOW FIELD CODE

The 3-D, time-dependent, inviscid nosetip flow field code that was
developed using the 3-D coordinate transformation described here is called
CM3DT (Conformal Mapping 3-D Transonic). This code can treat ideal or
equilibrium real gas thermodynamics, has both pitch and yaw capability,
and is able to treat weak embedded shocks on indented nosetips using the
x-differencing scheme*. To provide total body inviscid flow field capa-
bility, the CM3DT code has been coupled to the BMO/3IS**, NSWC/D3CSSt,
and STEIN*' afterbody codes. Complete details on the CM3DT analysis and
results obtained with this code may be found in the following references:

Hall, D. W., "Inviscid Aerodynamic Predictions for Ballistic Reentry
Vehicles with Ablated Nosetips," Ph.D. Dissertation University of Penn-
sylvania, 1979; also, BMO TR to be published.

Hall, D. W., "Calculation of Inviscid Supersonic Flow over Ablated Nose-
tips," AIAA Paper 79-0342, January 1979.

*Moretti, G., "An 01d Integration Scheme for Compressible Flow Revisited,
Refurbished, and Put to Work," Polytechnic Institute of New York, POLY-
M/AE Report 78-22, September 1978.

**Kyriss, C. L. and Harris, T. B., "A Three-Dimensional Flow Field Computer
Program for Maneuvering and Ballistic Reentry Vehicles,” 10th USNavy
Symposium on Aeroballistics, July 1975; aiso, Daywitt, J., Brant, D., and
Bosworth, F., "Computational Technique for Three-Dimensional Inviscid Flow
Fields about Reentry Vehicles, Volume I: Numerical Analysis," SAMSO TR-
79-5, April 1978.

*Solomon, J. M., Ciment, M., Ferguson, R. E., Bell, J. B., and Wardlaw,

A. B., Jdr., "A Program for Computing Steady Inviscid Three-Dimensional
Supersonic Flow on Reentry Vehicles, Volume I: Analysis and Programming,"
Naval Surface Weapons Center, NSWC/WOL/TR 77-28, February 1977.

++Marconi, F., Salas, M., and Yaeger, L., "Development of a Computer Code
for Calculating the Steady Super/Hypersonic Inviscid Flow around Real
Configurations, Volume I. Computational Technique,” NASA CR-2675, April 1976.
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CM3DT RESULTS

This figure presents some typical results obtained with the CM3DT
inviscid nosetip flow field code. Shown are comparisons of predictions
to data obtained for the PANT Triconic shape* at M_= 5. It is signifi-
cant that attempts to compute the flow over this sTender shape using a
time-dependent code formulated in a spherical coordinate system were
unsuccessful. CM3DT, with its body-oriented coordinate system, was able
to obtain converged solutions for this shape, with the predictions agree-
ing well with the data, as seen in this figure.

*Abbett, M. J. and Davis, J. E., "Interim Report, Passive Nosetip Tech-
nology (PANT) Program, Volume IV. Heat Transfer and Pressure Distri-
bution on ablated Shapes, Part I1. Data Correlation and Analysis,”
Space and Missile Systems Organization, TR-74-86, January 1974.



CM3DT - RUN TIMES

ON A CDC CYBER 176, CM3DT REQUIRES 0.00045 CP SECS/POINT/STEP
FOR IDEAL GAS CALCULATIONS WITH A-DIFFERENCING

e 20% PENALTY INCURRED FOR COORDINATE
TRANSFORMATION (PARAMETERS ON MOVING

GRID UPDATED EVERY 10 TIME STEPS)

e 50% PENALTY INCURRED FOR X-DIFFERENCING
(RELATIVE TO MAC CORMACK DIFFERENCING)




CM3DT - RUN TIMES

On a CDC Cyber 176 computer, the CM3DT inviscid nosetip code with
A-differencing requires approximately 0.00045 CP seconds per grid point
per time step (iteration). Typically, 400-500 time steps are required
to obtain a converged solution. It is estimated that the computer time
required for a solution has been increased by approximately 20% by using
the 3-D coordinate transformation described here, when the parameters
of the transformation on the moving grid are updated every ten time steps.
When compared to the standard MacCormack differencing scheme, the use of
A-differencing scheme increases the run time requirements approximately
50% for this code.
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ABSTRACT

The multigrid method (MGM) has been used to numerically solve the
pair of nonlinear elliptic equations commonly used to generate two-
dimensional boundary-fitted coordinate systems. Two different geometries
are considered: one involving a coordinate system fitted about a circle and
the other selected for an impinging jet flow problem. MGM uses a nest of
grids from finest (upon which the solution is sought) to coarsest and is
based on the idea of using relaxation sweeps to smooth the error (equivalent
to eliminating high frequency Fourier components of the error). Thus most
of the computational work is done on coarser subgrids to eliminate longer
wave length components of the error. Two different relaxation schemes are
tried: one is successive point overrelaxation and the other is a four-color
scheme vectorizeable to take advantage of a parallel processor compuier for
greater computational speed. Results using MGM are compared with those
using SOR (doing successive overrelaxations with the corresponding relaxation
scheme on the fine grid only). It is found that MGM becomes significantly
more effective than SOR as more accuracy is demanded and as more corrective
grids, or more grid points, are used. For the accuracy required here, it is
found that MGM is two to three times faster than SOR in computing time. With
the four-color relaxation scheme as applied to the impinging jet problem the
advantage of MGM over SOR is not as great. Perhaps this is due to the effect

of a poor initial guess on MGM for this problem.
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The multigrid method (MGM) [1] can numerically solve linear or non-
linear elliptic partial differential equations more rapidly than conven-
tional means of solution such as successive overrelaxation (SOR). MGM can
be applied to the numerical solution of partial differential equations not
amenable to numerical solution by fast direct matrix solvers such as
diagonal decomposition. Thus it was deemed desirable to apply MGM to the
numerical solution of the system of nonlinear elliptic equations commonly
used to generate boundary-fitted coordinate systems, especially when the
number of grid points is large. The standard elliptic equations for a typical

mapping, shown schematically in Figure 1, are

L, (x,y) = ax_,_ - 2Bx_ + yx + J2(Px + =0 1
l(x y) = a EE en T %0 ( X an) 1
L X, = ay,., - ZBVV + + JZ(P‘Y + Ov ) = 0 (2)
2 (%53 Yeg “en T i ‘g Yy <)
where
= W2 2
o = x° + = +
n yn 8 XEXn yEyn
2 2 (3
= x% + J = -
VX T Xe¥n T XY

and P and Q are functions of £ and n. Dirichlet conditions are specified on
all boundaries of the computational space including the interior slit (which
maps to the body in the physical space). Each side of the slit has a set of

Dirichlet data with a common value for each of the endpoints of the slit.

[1] A. Brandt, Math. of Comp., Vol. 31, No. 138, April 1977, pp. 333-390.
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The basic idea of MGM is to do most of the computational work on coarser
corrective grids containing far fewer points than the finest grid upon which
the solution is sought. The grids form a nest, each coarser grid having
twice the mesh spacing in each coordinate direction of the previous finer
grid. In Figure 2 which represents the Full Approximation Storage scheme of

f1]: v = (x,y), L = {i;} such that Eqs. (1) and (2) become Lu = F = {g},

1 2 k 2 M (k representing the kth grid with M the finest), ¢ = (x,y) on the
boundaries of the computational space (Dirichlet values so that A is an
identity operator) and superscripts refer to discretized quantities on the kth
grid. (All operations involving ¢ in the flow chart can be ignored, since the
Dirichlet conditions are constant on all the grids.) The main idea behind MGM
is that relaxation sweeps are a smoothing process which eliminate the highest
frequency Fourier components of the error on any grid. First, starting with
an initial guess for the solution, several sweeps are carried out on the

out error is represented by the residual £ - L UM My M and the correction
UM-u (where UM is the exact discrete solution on the finest Mth grid). The
residual, consisting mainly of longer wave-length Fourier components, is dealt
with by solving its coarser-grid approximation

M1 M1 M-l M—l ML

- 1, )

A_k for k=M-1 in the lower right box of

for UM_l, which is represented by F

Figure 2. The symbol Ik—l means interpolation of a quantity from the kth

k
grid to the (k-1)st grid. Eq. (4) is solved in the same way as the original
equation on the finest grid. If solution of (4) is obtained after several
relaxation sweeps, the coarse grid approximation UM-l-Ig—llj to the smoothed

out function UM—uM is added to uM. That is uM*-u + IM— M-1 3—1135, which

is the expression in the lower left box for k=M. The new uM is a better
approximation to the solution UM and is the starting point for more relaxation
sweeps for the original set of Eqs. (1) and (2) on the finest grid. If conver-
gence is obtained, the process is complete; if not, the process returns to the
coarser grid to sweep the residual equation again. If it doesn't converge
after a few sweeps, then the next coarser grid is used to eliminate long wave
length errors for the residual equation, etc. Each residual equation has a
corresponding residual equation and correction on the next coarser grid. (The

residuals were weighted locally as in [1].)
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Figure 3 shows computer drawn body-fitted coordinate systems generated
to a specific accuracy using MGM and SOR (the two coordinate systems coincide).
The relaxation scheme used was successive point overrelaxation. According to
the notation used in Figure 1, m and n are 81 and 21, respectively; the slit
end points are (€33,n13) and (553,nl3), respectively; (Xl’yb) = (-8.4, -8.0)
and (Xr’yt) = (7.6, 0.0); Ax = .2 and Ay = .4; AL = An = 1; and the body is
a circle of radius one centered at (x,y) = (0, -3.2). P and Q were set to
zero in Eqs. (1) and (2). An experimentally determined, essentially optimum
overrelaxation factor of 1.7 was used in the successive point overrelaxation
sweeps in both MGM and the SOR method. All coarser corrective grids contain
grid points on the slit. The initial guess for x(g,n), y(&,n) in the computa-
tional space is obtained by extending the Dirichlet data at the outer boundaries
throughout the space except at the slit, where the body Dirichlet data are used.
The convergence criterion for the solution of Eqs. (1) and (2) was that both
Ly-error norms (one for each equation) be less than an input value iiEiiLz.
(This will be called satisfaction of {IE{}LZ.) For Figure 3, i]E]iLz = .001.
To satisfy this criterion, MGM used 32.5 WU and 16.08 CP seconds compared to
66.0 WU and 22.17 CP seconds for SOR. (A work unit (WU) is the equivalent of
one SOR sweep on the finest grid, and CP seconds refer to central processor
seconds used on the Texas Instruments Advanced Scientific Computer (TI-ASC).)
For IIEI{LZ = .01, MGM used 20 WU compared to 29 WU for SOR; CP time was the
same for beth methods (due mainly to the additional computational work in
computing residuals in MGM). The results show that the effectiveness of MGM
increases (compared to SOR) as the error norm decreases. This is consistent
with the fact that the remaining longer wave length errors are eliminated more
slowly using SOR. The parameters § = .3, £ = .3 were used to control the flow
of MGM. The parameter § determines the convergence test on each grid and the
parameter { determines how fast the convergence must be (how fast the high
frequency components are eliminated) on each grid. Whenever
g < (l[E||E2)i+l/(||E||E2)i on a kth grid, MGM will then process on the coarser

i+
(k-1)st grid with an error norm to be satisfied equal to S(IIE{IEZ)l 1.

(Super-
scripts i,k refer to the ith relaxation sweep and the kth grid, respectively.)
These parameters are used as in [1], have a range (0<8<1; 0<z<1), and
greatly influence the performance of MGM. The present choice is not necessarily

optimum but was the best of a number of choices tried in the unit square.
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Figure 4 shows a computer drawn body-fitted coordinate system, similar

to Figure 3, generated with MGM and satisfying IIEIIL = .001. The grid
2

parameters are (see Figure 1): m and n equal to 129 and 81, respectively;

slit end points of (£,,, n,,) and (& ), respectively; (x, ,y,) =
49° 49 277D

81> "49
(-7.68, -8.0) and (xr,yt) = (7.68, 0.0); Ax = .12 and Ay = .1; AL = An = 1;
and the circle of radius one was centered again at (0, -3.2). To satisfy

||El|L2 = .001 MGM used 21.863 WU and 70.67 CP seconds compared to 102.0 WU

and 217.83 CP seconds used by SOR. This represents a significant saving of

computer time by MGM. To satisfy ||E||L = .01 MGM used 10.863 WU compared
2

to 17.0 WU used by SOR with CP time essentially the same. These results,
along with those for Figure 3, show that MGM is more effective, compared to
SOR, when more corrective grids are used and more accuracy is required.
Figure 4 has five corrective grids and Figure 3 has three corrective grids
finest). The parameters § = .03 and ¢ = .2 controiled MGM
for Figure 4. Choosing smaller § and 7 makes it more likely that all the

coarser corrective grids will be used, which is desirable.
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Figure 5 shows a computer drawn body-fitted coordinate system generated
using MGM and satisfying HEI]L2 = .001. SOR was also used to generate this
grid and is in excellent agreement with MGM. The geometry is motivated by
an impinging jet flow problem that is planned to be run on this grid. The
flow from the channel interacts with the solid body on the right. The
computational space has the same shape as the physical space except that
the body is replaced by a slit. Excluding the channel, the grid consists of
137 points in the horizontal direction by 97 points in the vertical direction.
The grid for the channel itself consists of 25 horizontal grid points by
33 vertical grid points. The slit (and body) are 49 grid points long.

Corner points on the body and channel have been excluded from the grid.
Exponential grid spacing was used along various parts of the horizontal and
vertical boundaries of the grid. In an attempt to preserve this boundary
spacing in the grid interior non-zero P and Q were used. Although grid lines
are still bent near the boundaries, they are not bent as much as when P = Q = 0
was tried. To compute this grid (which had 4 corrective grids, including the
finest) MGM was ''vectorized'" on the TI-ASC since it is a parallel processor
machine. To accomplish vectorization, which cut computing time by a factor of
six, a four-color relaxation scheme was used (i.e., even points of even rows
were relaxed simultaneously; odd points of even rows; etc.). With this scheme
MGM used 82.781 WU and 45.57 CP seconds to satisfy ||El|L2 = .001 when using
an overrelaxation factor (RF) of 1.8 on the finest grid and relaxation factors
of 1.6, 1.4, and 1.2 for the progressively coarser grids. (Varying RF in this
way improved MGM's performance.) SOR (with the four-color scheme) used 170.0
WU and 76.68 CP seconds using a relaxation factor of 1.8, which is about
optimum for this SOR. MGM used 60.641 WU and 36.67 CP seconds to satisfy
IIEHL2 = .001 when RF's of 1.6, 1.4, 1.2, 1.0 were used on progressively
coarser grids (with 1.6 used for the finest grid). With these RF's MGM used
26.016 WU to satisfy ||E||L2 = .01 compared to 82.0 WU used by SOR with

RF = 1.8. The parameters 8§ = .05, n = .95 were used for MGM which was
divergent fof n < .9. MGM should perform better with a better initial guess
than used here. (The horizontal straight lines in the initial guess were

discontinuous at the right-most boundary.)



FINITE DIFFERENCE MESH MODIFICATION TECHNIQUE
WITH APPLICATION TO SUPERSONIC WEDGE FLOW

by

Fred W, Martin
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Curved finite Element Mesh Verification

R. Wait and N.G. Brown

Department of Computational and Statistical Science,
University of Liverpool,
Liverpool L69 3BX,

England,

Abstract

In a computer program a finite element mesh in invariably represented as
a set of lists of numbers. It is the aim of this paper to provide techniques
whereby it is possible to verify that given sets of data correctly define a
well posed finite elemenf grid. Thus we wish to check that the data corresponding
to an individual element represents a single region with a simply connected interior.
In addition it is necessary to check that when the elements are pieced together
there are no overlaps and no gaps left in the representation of the domain of the
problem. In addition it is useful to check that nodes are only duplicated or
pathologically close together when this is necessary as for example when
discretizing one region with a crack.

We consider isoparametic and blended finite elements and provide simple
algebraic and/or geometric conditions that have to be satisfied if the trans-
formation on to a reference element is one-one. It can be shown that the well
known 'l-point' condition is a special case of one of the necessary conditions but
is only sufficient in exceptional cases. Equivalent necessary conditions for three-
dimensional tetrahedron and brick elements are developed. Cubic and higher order
elements can be included in more general conditionsderived from blending function

approximations.

Summary of a poster presentation at "Grid Generation Workshop", NASA-Langley

Research Centre, 6-7th October, 1980.
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If N is the total number of co-ordinates then any search through the co-ordinates
involves O(N log N) operations if the search is arranged in terms of nested binary trees.
A straightforward search of a three dimensional co-ordinate list involves O(NB) operations
In terms of c.p.u. time, the dominant term is the set up time for the tree rather than
the search time. The set up time is O(N) and even for moderate N (100-200), the binary
tree approach shows dramatic gains. One search through the nodes checks for duplications.

A similar search through the elements is used to check inter—-element connectivities.
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When considering curved grids various possible invalid elements have to be checked.
Tests for (a) and (b) were developed by R.B. Simpson (see these proceedings). An element-
wise search is adopted for (c). A test on the local transformation is necessary to avoid
(d) - nonconvex elements and, (e) or (f) - overspill. Tn both these latter cases, the
interior of the reference element £ does not correspond to the region enclosed within the

boundary 3E of the physical element E.
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The general transformation T:EO+ E is linear (bilinear for quadrilaterals) and
forms the basis for the nonconvexity test. For isoparametric elements the Jacobian of
T1 is a polynomial in the perturbations a, b and e for the six-node triangle it is

second degree in each of the perturbations.
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The validation of the local transformation requires the 1-1 correspondence of the
simple closed curves 8E and 3E. Then the conditioq on the Jacobian of the form J»>0
is sufficient to ensure a valid element and an invertible transformation. The methéd
adopted is to view the condition J=0 as defining a curve with exterior J>O0 that must
contain the reference element . Thus (a) leads to a valid elerwent, (b) and (c¢) are

limiting cases and (d), (e), (f) and (g) are invalid.




(d)

If two of the sides of a six-node triangle are fixed then the condition J > O
can be viewed can be viewed as a restriction of the possible locations of the node on
the free side. The boundary of the feasible region can be split into arcs, each arc
arising from a limiting case of figure 5. If two sides are straight (a), the feasible
region is a wedge with straight sides. The limiting cases corresponding to J=0 at a
vertex always reduces to a linear condition if the sides are curved (c), then there is

an additional non-linear arc corresponding to the tangential condition (d).
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An analogous approach can be adopted for other forms of elements such as
quadrilaterals. For the 8-node element the three conditions reduce to arcs;
two linear and one nonlinear. These bound the feasible region for the position
of one side node if all the others are assumed fixed. For elements with more
than one side (or edge) node it is not possible to provide a simple geometric

interpretation of the condition but it is still easy to represent it algebraically.
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Grid Generation for General Three-Dimensional Configurations
by

K. D. Lee, M. Huang, N. J. Yu and P. E. Rubbert
The Boeing Company
Seattle, Washington

Abstract

The objective of the present study is to construct a suitable grid system
for complex 3-D configurations such as a wing/body/nacelle shape for the
solution of nonlinear transonic flow problems. Two approaches have been
explored based on Thompson's body-fitted coordinate concept. The most general
approach is to divide the computational domain into multiple rectangular '
blocks where the configuration itself is also represented by a set of blocks,
whose structure follows the natural lines of the configuration. The
block-structured grid system is adaptable to complex configurations and gives
good grid quality near physical corners. However, it introduces algorithm
issues for the flow solution concerning the treatment of nonanalytic grid
block boundaries and nonstandard grid cells. These issues have been explored
in relation to the grid generation. A more limited approach treats a
wing/body configuration with only a single rectangular block in computational
space. In this treatment the issues involving nonstandard cells are avoided,
but other limitations on grid resolution appear. Both a linear and a
nonlinear system of grid generation equations have been developed including
methods of grid control. The linear method can generate grids of comparable
quality with order-of-magnitude less cost. Its disadvantage is the greater
possibility of ill-conditioned grids which, however, can be easily controlled
in the block-structured grid system.

Grid Generation Equations

1 Linear System
> - -~ _
XEE+BX177I+CX§§+D?E+E?TI+F;}+G =0
? = (X9 Yy Z)

B to G: grid control
functions of £, n, and/or ¢

2 Nonlinear System
A(i’ +L? +B(X, +2 2\ +cf? +l? +2(DR,,, + EXp + FX, ;) =0
133 JgAE m2g M 19 12c ¢ gn 31 n§

A to F: coupling terms
functions of x, y, and z

P, Q, R: grid control

J = Jacobian of the transformation



However, it

introduces special points termed a "fictitious corner," a "collapsed edge,"

and a nonanalytic block boundary.

Block structuring
The multi-block grid obviously provides more

Figure 1.
This is a schematic illustration of a typical block structured grid about a

wing/body/nacelle configuration.
desireable grid densities and eliminates the "lost corner."
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Figure 2. Comparison of grid structure

Lost corner - a physical corner transformed into a smooth point in the
computational space

Fictitious corner - a smooth point transformed into a corner point in the

computational space

Nonanalytic block boundary - grid lines across the block boundary are
continuous but not smooth

Collapsed edge (3-D) - grid lines merge together in the physical space
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Figure 3. Block-structured grid generation process

After defining the overall block structure, a one-dimensional grid generation
along the block perimeters produces a perimeter discretization. This provides
boundary conditions for a subsequent two-dimensional grid generation producing
grids covering the block surfaces. These in turn serve as boundary conditions
to produce three-dimensional volume grids filling each block.
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Block-structure grid for an ellipsoid

Figure 4.

This example shows the grid around an ellipsoid which has been transformed to

Fictitious corners can be seen.

(A) ON THE BOUNDARY SURFACE

a cube in computational space.
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Figure 6. Comparison of grids near an airfoil
The use of multi-block grid is considered for an airfoil. Compared to the

ring-type grid, the multi-block grid seems to be overly complex. Its
advantage is in its adaptability to more complex geometry.
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Figure 5. Algorithm compatability study

The effect of the grid structure and the special points on the flow solution

is explored by solving the potential flow over a cylinder. Cell-oriented flux
formulation is used to treat the algorithm issues.
systems yield good resolution. Accuracy depends on the cell size rather than

the grid structure at the special points.

Surprisingly, all the grid
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Figure 7. Airfoil study

The ability to produce accurate solutions using the multi-block grid is
demonstrated in subsonic and transonic regions. Compared to the results from
the ring-type single-block grid, remarkable accuracy was obtained even when
the fictitious corner is located in supersonic regions. A1l the flow and
metric quantities are defined at the center of each cell and the artificial
density method is adopted for the density retardation in supersonic region.
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Figure 8. Surface grid f

or a wing/body

(single-block structure)

The use of the C-type grid provides smooth grid distribution near the wing
leading edge. The body surface line on the symmetry plane coincides with a
grid Tine which consists of lost corners. One concern is grid quality at the

wing tip.
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Figure 9. Surface grid for a wing/body
(multi-block structure)

The use of a multi-block grid eliminates the lost corners in the single-block
grid of figure 8 and improves the grid quality near the wing tip, while
producing the fictitious corners and nonanalytic block boundaries. Its
ability to extend to more complex configurations is obvious.
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Figure 10. 3-D flow solution
A transonic solution for a wing/body combination is obtained using the

single-block grid and compared to the experimental results. The use of
body-fitted grid system improves the accuracy near the wing/body junction.
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Figure 11. 3-D flow solution
The body-fitted grid system can produce quite accurate pressure distribution

even on the body surface. Very coarse nose grid distribution prevents fine
pressure resolution in that region.

CROWN LINE PRESSURES FOR 747-200
AT M= .84 , 0 =2,8°
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WORKSHOP ON GRID GENERATION
NASA Langley Research Center
October 6-7, 1980
BOUNDARY-FITTED COORDINATE SYSTEMS FOR ARBITRARY COMPUTATIONAL REGIONS
By Edward J. Kowalski
Boeing Military Airplane Company
Advanced Airplane Branch
Seattle, Washington 98124

A computational region of arbitrary cross section presents a significant
problem in the generation of a mesh. Simple orthogonal meshes are
difficult to use because the mesh points do not naturally fall on the
region's boundaries. Differencing and interpolation schemes become
complex and cumbersome, and itlis difficult to extend these schemes to
higher order because of the complex logic required. Higher order schemes
are desirable as they allow calculation of a flow to a given level of
accuracy with a Tower mesh density and hence less storage than a lower
order scheme. High accuracy solutions are possible for a region of
arbitrary cross-section when a boundary-fitted computational mesh is
employed. A boundary-fitted mesh is defined as a mesh in which the
boundary (i.e., a duct wa11f is coincident with the mesh points that are
used for finite difference expressions at, and adjacent to, the
boundary. Interpolation is not required, and extension to higher order
differencing is straightforward. This is a significant benefit when the

boundary conditions have a dominant influence on the solution.



This paper will discuss the application of Smith and Wiegel's method for
generating boundary fitted coordinate systems (discussed in their
AIAA-80-0192 paper entitled, "Analytic and Approximate Boundary Fitted
Coordinate Systems for Fluid Flow Simulation") for two practical flow
problems characterized by complex surface geometry:

o radial mixer lobe

o subsonic inlet designed for high angle-of-attack capability
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In the method of Smith and Wiegel, two disconnected boundaries are
defined and an explicit functional relation is used to establish the

transformation between the physical domain and the computational domain.

The physical domain is defined by a cartesian coordinate system; the

computational domain is defined with the variables £ , n and ¢ with the

values: O’-‘-E{-i
0¢ n<
0z ¢4

Two possible connecting functions are suggested: 1linear and a cubic
parametric polynomial. The following cubic polynomial equation was used

to generate meshes for both the lobe mixer and the subsonic inlet:

dX

x = (.01 () + KO0 + 2L (.01
dlz
+ "&?“ ((-C)f4(ﬂ).
dayY

= Ve ) + 60, + gL (6

de
+ .dT]— ((.()fq(ﬂ),

dz
2 = 2,(€.0f(n) + Z(e.01 () + gL (C.o)f5tn)

+ g,? (€.0)f,(n),



where:

Xg (5550 0 (4.6, 7,(4.€), £ =1,2 are the

boundary points in the physical domain
e (N5§)s d¥e (R.) dz, (X.€), £=1,2 are the
= $5 o 45 £ 5.5

derivatives of the boundary points in the physical domain

fyn) = 20 - 3fe 0,
2-

fz(ﬂ) b '2ﬂ3 hd 3“.

fs(n) = n3 - 2"2 +n,

2
fA("I) = n3 -~ N,

The cubic connecting function forces orthogonality at the boundaries of

the physical domain by calculating the derivatives f—'dé‘n' (%fﬂ)

[ §
ave (€ ,€ ) and dz from the cross product of the tangential

derivatives and then dividing by the magnitude of the normal vector.



Four extensions of the Smith and Wiegel method were necessary in order to

successfully apply their technique to the mixer lobe and subsonic inlet.

First, because of the nature of the mixer and inlet geometries, points

defining the boundaries had to be positioned using a geometric

progression.
S=a+ar+ ar2 + ...+ apt-l
=a(l—rN)
1-r

where:

S = the total length of the boundary

a = first increment

r = scale factor

N = number of cells (one less the number of boundary points)

For the mixer, the scale factor r was varied linearly from r =1 at the
mixer entrance plane (where the boundary is an arc) to r = Y max at the
mixer exit plane (where the boundary is highly distorted). This makes it
possible to force the mesh to migrate to regions of interest without
causing significant distortions in the mesh from plane to plane. The
optimal distribution of mesh occurred when the upper and lower boundary

mesh points were stretched in opposite directions.
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PRIMARY LOBE - PLANE 107
GEOMETRIC PROGRESSIGN LOWER BOUNDARY 1.0528 UPPER BOUNDRRY 1.8500
SLOPE SCALER LOWER BOUNDRRY 1.08588 UPPER BOUNDRRY

1.095080

x
GEOMETRIC PROGRESSION

SLOPE SCALER

PRIMARY LOBE - PLANE 128
LOWER BOUNDRRY 1.10688 UPPER BOUNDRRY 1{.1000
LOWER BOUNDRRY 1.1008 UPPER BOUNDRRY 1.1080

Geometric Progression of Boundary Points for the Primary Stream.
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Geometric Progression for Boundary Points for the Secondary Stream.




The inlet has certain regions (hilite, throat, etc.) which require a fine
computational mesh to insure a detailed analysis. For this reason, four
regions along each inlet contour and five regions along the boundary of
the analysis domain required individual geometric progressions. The
scale factor, " and the number of cells, N, of each regions must be
chosen to insure a smooth progression in cell length along each of the

boundaries.
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The second extension uses a ramping function to regulate the dependence
of the connecting function on the boundary slope. This connecting
function is an explicit functional relation used to establish the

transformation between the physical domain and the computational domain.

For the mixer lobe, this dependence was regulated to redistribute the

internal mesh points and reduce mesh skewness.

In the case of the subsonic inlet, it was found that a constant value for

each plane was sufficient to insure against mesh line cross-over.



WITHOUT RAMPING FUNCTION

WITH RAMPING FUNCTION

Figure 4. Connecting Function Dependency on Boundary Slope.
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The third extension utilizes the concentration function suggested by
Smith and Wiegel, but uses it to force the mesh in the direction of both
boundaries of the mixer lobe. More mesh was then needed to be linearly

added to fil1l the void created by this mesh concentration.

The inlet only required the mesh to be forced towards the inlet contour.
A concentrated mesh was assumed unnecessary along the spinner boundary;
jt was felt that for a potential flow analysis the flow about the spinner
would not propagate upstream and affect the solution at the regions of
interest (hilite, throat, etc.). The mesh concentration for both the

mixer and the inlet permits flow analysis within the boundary layers.
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Figure 5. Mesh Concentration.






The fourth extension applies to the subsonic inlet only. It was
necessary to produce a computational mesh which possessed a smooth
progression of cell metrics and cell volumes in all directions to allow a
solution process of a flow analyser to use the grid efficiently. The
interior points of the computational mesh were "smoothed" by a multiple

application of a five point diffusion operator:

=g {xu_- 10+ XL+ 11 XL, 1- 1) +X(L, T+1) -4 x X(L 1) c;d}

YL Dpew = O.{Y(L-Ll)+Y(L+1,I)+Y(L,I+‘l) +Y(L,I+1)—-4~Y(L'”o|d}

The value of & and the number of times of application were determined by

trial and error. -

The "smoothed" boundary points could not be determined from the five
point diffusion operator since one of the required smoothing points would
be outside the mesh region. Their values were determined from the

intersection of, the lines defined by the "smoothed" interior mesh points

and the boundaries.



X(L-1,1) + X(L+1,0) +X(L, |- 1) +X(L, 1 +1) -4 x X(L, 1) old]

X(Lll)new = (1{

—4«-Y(L,I) |d‘
Y{L, Dpew = G.{Y(L-Ll)+Y(L+1,l)+Y(L,|+1) +Y(LI+1) o

FIVE POINT DIFFUSION OPERATOR
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Y(L, 1) - Y(L,I+1)

M= L - XiL1+1)

equation of segment @
Y- YILD = My X - X(L,1) @

slope segment @

Y(L+1,1+1)-Y{(L+21+1)
M2 = X(L+1,1+1)-X(L+2,1+1)

equation of segment @
Y-Y(L+1, 141) =Ma{X-X(L+1,1+1) ®

since a line thru segment @ intersects segment @ ,
the X’s and Y's of equations (1) & (2) equal each other.
Solving for X:

X(L-|+1)new=M1 X(LDY-Mop{X(L+1,1+1)}+Y(L+1,1+1)-Y(L, 1)

M{-M
Solving for Y: 1 2

YL 1+ Vg = My XL 1+ D ey - XL D+ Y(L D)



Example meshes for the last radial mixer lobe cross section and one

subsonic inlet cross section.




GEOMETRIC PROGRESSION

SCCONDARY LOBE - PLANE 120
LOWER BOUNDRRY 8.9508 UPPER BOUNDRRY

1.1000

SLOPE SCALER LOWER BOUNDARY 1.858@ UPPER BOUNDARRY 1.1080

GEOMETRIC PROGRESSION

PRIMARY LOBE - PLANE 120
LOWER BOUNDRARY 1.1008 UPPER BOUNDRRY
SLOPE SCALER LOKWER BOUNDRRY {.1080 UPPER BOUNDRRY 1.1008

Example Mesh for Last Mixer Plane.

1.1000



||

]

|

_ ////7/// [/
P A s s

EXAMPLE MESH FOR THE SUBSONIC INLET

A\




Conclusions

The method of Smith and Wiegel can be used to generate meshes for mixer
lobes and subsonic inlets that are compatible with flow analysis codes
requiring a boundary fitted coordinate system. Successful application of
this mesh generator required development of procedures to distribute the
mesh points along the boundaries, to regulate the dependence of the
connecting function to the local boundary slope, to concentrate the mesh
into regions of special interest, and to modify the mesh grid so that it
possessed.a smooth progression of cell metrics and cell volumes in all
directions. The method of Smith and Wiegel when coupled with the
extensions mentioned above has proven to be easy to use and control for

the inlet and mixer lobe geometries investigated.

The next step is the formulation of a truncation error monitor for
arbitrary meshes. This monitor will define where in an analysis domain
the grid length scales must be changed and by what amount in order to
equalize truncation errors over the entire analysis domain. Once these
errors have been equalized, this same monitor will use several levels of
grid distribution (of the above analysis grid) to then make estimates of
the absolute truncation error spectrum. This work is currentiy under

contract with the NASA Langley Research Center.



A VARIABLE COEFFICIENT APPROACH
TO BOUNDARY-FITTED COORDINATES

by
Thomas T. Bowman

University of Florida

Prepared under U.S. Navy Contract 1800-0832-79 issued by
David W. Taylor Naval Ship Research and Development Center

AN



The author has investigated the use of the generating
equations
(GEX)X+(0€y)y=0
(tng) (Tny) y=0
where ¢ and T are strictly positive functions. Much of the

work in boundary-fitted coordinates can be presented

naturally in a unified approach using variable coefficients.
The advantages of this approach are:
(1) The generating equations have both a maximum and

minimum property.

(2) The equations have the physical interpretation
as the heat equation with variable thermal con-
ductivity constants which leads to an intuitive
concept of controlling the £ and n lines.

The method has been implemented on a CDC 6700 computer
at DTNSRDC. The adoption of the variable coefficient
approach can be accomplished by limited changes in most
programs which generate boundary-fitted coordinates.

The author also has some new results on generating

orthogonal meshes with prescribed boundary values.




GRID AND METRIC GENERATION ON THE
ASSEMBLY OF LOCALLY BI-QUADRATIC COORDINATE TRANSFORMATIONS'

A. J. BAKER & P. D. MANHARDT

UNIVERSITY OF TENNESSEE/KNOXVILLE,
AND CoMCo, INC, KNOXVILLE, TN

ABSTRACT

The generation of metric coefficients of the coordinate
transformation from a generally curved-sided domain boundary
to the unit square (cube) is required for efficient solution
algorithms in computational fluid mechanics. An algebraic
procedure is presented for establishment of these data on the
union of arbitrarily selected sub-domains of the global solution
domain. A uniformly smooth progression of grid refinement is
readily generated, including multiple specification of refined
grids for a given macro-element domain discretization. The
procedure is illustrated as generally applicable to non-simply

connected domains in two- and three-dimensions.

TResearch principally supported by USAF Grant No. AFOSR-79-0005.



COMPUTATIONAL REQUIREMENT

NAVIER-STOKES EQUATIONS

20 3
L(ay) = 3¢ # axg 1% T Fij| = 0
3q_i A
2(q;) = a1q; + a2 % ng otoas = 0
COORDINATE TRANSFORMATION
an
- I _k
x; = x5(ny) Bx;  ang [ } X
axj k axj J

NUMERICAL SOLUTION ALGORITHM

T \J Trw
Se[{DETQ}e[M3000]{QI}e - {(UBARK}[M30K0I{QI},
-{ETAEL}Z[M30£O]{FLI}e} = {0}

DISCUSSION

The Navier-Stokes equations contain the vector divergence
operator. The required transformation projects X5 onto n,; with
coordinate surfaces defined coincident with solution domain
boundaries. The Cartesian description of dependent variables is
retained, while the convection velocity is expressed in contra-
variant scalar components. The numerical solution implementation
requires nodal distributions of components of the forward and

inverse Jacobins, and J, K, and L are tensor summation indices.




LOCALLY BI-QUADRATIC COORDINATE TRANSFORMATION

PHYSICAL DOMAIN TRANSFORMED DOMAIN

xy = )T

117? 2

X y

Two-Dimensional

Three-Dimensional

DISCUSSION

The bi-quadratic cardinal basis {Nz(ﬁ)} transforms the vertex
and non-vertex node coordinate description of a smooth region of
R" onto the unit square or cube spanned by the locally rectangular
Cartesian coordinate system n. The inverse transformation J™1! is
non-singular for a range of non-midpoint definitions of the non-
vertex node coordinates (x), yielding a non-uniform discretization

on R".



EXAMPLE: COMPRESSOR BLADE ROW

Resultant Solution
Domain Coarse
Discretization

i SHRERRS
4] \\J\:\\\
NN
L1 ANA
TN
//ﬁ:\:\\ A \N
]£:;/ \4\£i§:\ \\ \\x,
\\\\ ‘
W

Discretization
Segment

Macro-Domain Q\ﬁk«”d
X ]

'/*//f’°

Y

b 4

F

/.

Resultant Macro-
Domain Fine
Discretization

%

x

o—

DiscusSION

Three of the ten macro-domains, used to form the blade row
discretization, are shown. The non-midside location of non-vertex
nodes produces the non-uniform grid, only a few gridlines of which
are shown. The inset illustrates a fine fiscretization of one
macro-domain. The coordinates of all nodes on boundaries of macro-

domains are unique.




DETAILS OF THE COORDINATE TRANSFORMATION
NoDAL COORDINATES {XI}:

X, = {Nz(nj)}T{XI}e

WHERE :

~

n2)(-ny1 - n2 -
ﬂz)( T = N2 =
n2)( n1 na -
na){-n1 + n2 -

<+

— ol d
N N e

N2 (n)} = % ‘

U4+

[ T R
333358335

NN NN
e T T T

—t o] ] wd e d d
et et et e e e e e

o OFRR RN e

+
33 3
[SIMTSIENINS
s Nt Nt

-

JACOBIANS

o
it

BX_i
= an = J(nj, XI)

1
= JeiJ [cofactors of J]

Cu
]
-
it
— 1
@ | w
X’ fom
Gy
'
1

it

J-l(ﬂja XI)

DISCUSSION

Within a macro-domain, the componeﬁts of both J and J ! are
continuous functions of nj and the global macro-node coordinate
pairs (triples) {XI}, 1 < I < n. Each global coordinate X; Pos-
sesses an independent transformation; the corresponding Jacobian
must be of rank n to assure existence of J . Once the matrix
elements of {XI} are defined, selection of any coordinate (n;, n2)

defines a unique coordinate pair (x1, X2), i.e., a mesh point on

the refined grid in physical space.



GENERATIONS OF ORTHOGONAL SURFACE COORDINATES*

F. G. Blottner and J. B. Moreno
Sandia National Laboratoriest
Albuquerque, NM 87185

An orthogonal surface-oriented
coordinate system has been developed
for three-dimensional flows where the
computational domain normal to the
surface is small. With this restric-
tion the coordinate system requires
orthogonality only at the body surface.
The coordinate system is as follows:
one coordinate measures distance
normal to the surface while the other
two coordinates are defined by an
orthogonal mesh on the surface. One
coordinate is formed by the inter-
section of the body surface and the
meridional planes as illustrated in
Figure 1 and gives the 6 = constant
lines. The other coordinate £, which
is nondimensionalized with a character-
istic length of the body geometry,
measures the distance along the body
surface when 6 = 0. This coordinate
system has been utilized in boundary
layer flows!’? and for the hypersonic
viscous shock-layer problem.

Two methods have been developed
for generating the surface coordinates.
The first method uses the orthogonal
condition in finite-difference form to
determine the surface coordinates with
the metric coefficients and curvature
of the coordinate lines calculated
numerically. The second method obtains
analytical expressions for the metric
coefficients and for the curvature of
the coordinate lines. Both methods
assume the body surface is defined in
terms of a cylindrical coordinate
system where r = r(x,6). The surface
inclinations ¢1 and ¢, as illustrated
in Figure 2 are determined from

] 3
tan ¢1 = (55)6 and r tan ¢2 = - (sg)x

and are known quantities.

“\\§ MERIDIONAL
4 %/ PLANE
éAGNATION
' POINT ,

Figure 1. Surface Coordinate System.

Plane of Symmetry

Angles ¢ :
the Cyli&drical Coordinate
System.

Figure 2. and ¢, Defined in

* This work was supported by the U. S. Department of Energy under contract

DE-AC04-76-DP00789.
t A U. S. Department of Energy Facility.



In the numerical method,!’? the
orthogonal condition for the surface
coordinates results in the relation

dx = A dé (along £ = constant)

where

A =r tan ¢4 tan ¢2/(1 + tan2 ¢1)

The equation of the surface provides
the relation

dr = tan ¢1 dx - r tan ¢2 de

The surface coordinate & is -determined
numerically from the foregoing
equations by assuming a value of 46
and marching away from 6 = 0 to deter-
mine the values of x and r. 1In
addition the metric coefficients are
determined numerically from

hg = ds/dg
h = dt/dw
where
w = 0/27
d52 = dx2 + dr2

at? = as? + r2ae?

The curvature of the coordinate lines
are determined from

K . ¢ £t for w = constant
£ hghw dw

K - 1 ahw for £ = constant
w hghw EX4

with the derivatives replaced with mid-
point difference relations.

®In the second method?®, an analyt-
ical expression is developed for h
as follows: w

_ 2 2, \1/2
hw = 271r (1 + cos ¢l tan ¢2)

A differential equation results for

the other metric coefficient as follows:

dh 3d
& _ 2 1
I 27r cos ¢1 tan ¢2 (52—)6

=+

g

This equation is integrated along
£ = constant lines on the surface
from the initial condition hy =

1 at ® = 0. The substitution of
foregoing equations into the
equations for K, and K, give
analytical expréssions for the
curvature of the coordinate lines.
In evaluating these relations,
the variations of x and 6 along
the £ = constant coordinate must
be known.

A sphere at angle of attack
as shown in Figure 3 is used
to illustrate the computation of
the surface coordinates with both
methods. The surface coordinates
on the sphere as viewed from the
side are illustrated in Figure 4.
The £ = constant lines result from
planes intersecting the sphere
with these planes passing through
the line which is normal to the
plane of symmetry and is located
at

‘J 1 - (b/a)2

x/a

(x/a)2/(b/a)

y/a

The metric coefficients for this
coordinate system are given in
Figures 5 and 6 with good agree-
ment between the two methods. The
curvature of the coordinate 1lines
are given in Figures 7 and 8. It
is noteworthy that K, is independent
of £. The differencés evidenced

in Figure 8 can be partially
attributed to the numerical evalua-
tion of K being at one-half mesh
space locations away from the ¢
indicated.

The numerical method of gene-
rating the orthogonal surface .
coordinates has been applied to
ellipsoids, paraboloids and elliptic-
paraboloids. The coordinates on an
ellipsoid are illustrated in Figure 9.
The second method or analytical
approach has only been developed for
the sphere.




|

Figure 3. Cylindrical Coordinate
System for "Sphere at

£ Attack". - i . .
Angle of Att ack”. Figure 4. Coordingtes on a Sphere
(o = 307)
3 1.0472 1 T T
T T T I
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Figure 5. Variation of Metric Figure 6. Variation of Metric
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Figure 7. Geodesic Curvature of

Lines of Constant 9.
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Figure 9.

Surface Coordinates on
Ellipsoid (b/a = 1/4)
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0.27925

u'= 300 [o) Numerical

ALl L

9 0 0 0 0o 0o 0 o o o© 0.55851
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Figure 8. Geodesic Curvature of

Lines of Constant £.
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CONSTRUCTION OF COMPOSITE THREE-DIMENSIONAL GRIDS
FROM SUBREGION GRIDS GENERATED BY ELLIPTIC SYSTEM

by
P, D. Thomas
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SOME ASPECTS OF ADAPTING COMPUTATIONAL MESH
TO COMPLEX FLOW DOMAINS AND STRUCTURES
WITH APPLICATION TO BLOWN SHOCK LAYER
AND BASE FLOW

by
C.K. Lombard, M.P. Lombard, G.P. Menees, and J.Y. Yang

The proposed paper treats several practical aspects connected with
the notion of computation with flow oriented mesh systems. Simple,
effective approaches to the ideas discussed are demonstrated in current
applications to blown forebody shock layer floh and full bluff body
shock layer flow including the massively separated wake region.

The first task in constructing an adaptive mesh is to identify the
gross flow structures that are to be captured on the mesh and to work
out a grid topology that conforms to them. Among the properties the mesh
topology ought to admit are both computational accuracy and algorithmic
compatibility. Both these properties are served by grids that feature
large connected segments of natural or computational boundaries fitted
by mesh surfaces or curves of constant coordinate. But it is neither
necessary or always desireable that the entire surface of a particular
boundary feature be fitted by a single surface segment of one family
of coordinates. For accuracy, convenience, and particularly from the
point of view of modern algorithms that embody such features as vector
organization, spatial splitting, and implicit solution, it is very

desireable that the mesh be composed of identifiable continuous grid



lines, not necessarily of homogeneous coordinate type, that run from
boundary to boundary.

These notions are illustrated in the application to high Reynolds
number full bluff body flow in axisymmetry. Here the basic structure
of the turbulent flow is well known, Figure 1. The computational mesh
that we have adapted to the flow is shown in Figure 2.

We note that in the mesh shown the computational boundaries —
axis of symmetry, bowshock, body, and outflow plane are all fitted by
continuous grid lines. The mesh is so constructed as to be flow aligned
over the four principal regions — forebody shocklayer, base recircula-
tion, outer inviscid wake, and inner turbulent viscous wake. We note
the wrap around mesh provides continuity of the boundary layer and
shear layer in the aft expansion zone. The continuity of the mesh
coordinate topology is broken in the recompression zone which embeds
a saddle surface of the turbulent flow solution at the interface of
the recirculant base flow and downstream viscous wake. The singular
topology of the mesh in the base recompression zone is illustrated in
Figure 3. The viscous wake core box of the mesh, which provides con-
tinuity across the viscous-inviscid wake shear layer, can be regarded
as a separate sheet of the topology with a cut taken along a line from
the singular point down through the recompression zone to the wake axis.

The cut forms part of a set of construction lines embedded in the
mesh, Figure 4. It is central to the method described that these lines
which largely define the base mesh structure are also representative
of the flow structures which the mesh is to fit. Thus in the approach

presented here the construction lines serve the role of supplemental




imaginary boundaries along which mesh nodes are distributed according
to the usual criteria on ordinary boundaries. The resulting bounded
domains can then be filled in with computational grid by any of a large
variety of means, for example]’2’3’4.

The particular grid shown in Figure 2 is quite adequate in concept,
though not optimized in detail, and was simple constructed in a single
pass using one dimensional distributions along straight coordinate lines
between boundary points. Where non-uniform distributions have been
required they have been conveniently accomplished using a universal
stretching function due to Vinokurs. In the program, for the stretching
function as we have adapted and use it, the total interval along the
coordinate line and the (approximate) first mesh spacings from either
end of the interval are specified. The function then returns the dis-
tribution between boundary points. As convenient, the stretchings are
done variously in X, Y, or S (arc length). The actual X and Y coordinates
of mesh points are then found by the functional relationships of points
on the given coordinate curve, which of course can be piecewise defined.
Where fictitious boundary lines are to be embedded in the mesh actual
boundary points are defined on the connecting coordinate lines at half
first-mesh-cell intervals away from the fictious lines.

A virtue of meshes constructed of distributions along analytically
defined coordinate curves, and particularly straight lines, is that
differential displacements of boundary points are readily functionally
transformed through kinematic relations into corresponding displacements
of the intervening grid points so as to leave invariant the relative

distributions of mesh points along the given coordinate curves. For



the mesh shown in Figure 2, we presently use this property to analyt-
ically deform the outer flow portion of the mesh in relative conformity
with the moving, fitted bowshock.

In a similar manner it is intended in future work to differentially
adapt the interior base mesh to the changing flow solution by moving
the underlying construction lines. A central requirement to do this is
to define relationships tying the construction lines to the base flow
solution. In this regard it is intended that the X coordinate of the
mesh singularity coorespond to the axial location of maximum wake pres-
sure. Presumably, the Y coordinate of the singularity which 1ies on
the construction line through the viscous-inviscid wake shear layer ought
to be determined from a fit to the axial velocity gradient.

Along the same lines, however, we have developed an adaptive mesh
for the blown forebody shock layer which is intended to represent flow
over an ablating body. Here we wish to distribute points in predetermined
ways in the blown layer, the shear layer interface, and in the outer
flow region. In this case a construction line demarking the interface
between the blown and outer flow regions can readily and unambiguously
be fitted to the zero of the stream function based on mass flux and this
is what we have done.

We note in connection with the blown shock layer that the associated
flow has regions of steep gradient in density, velocity, mass flux, and
temperature and that these properties by no means vary together. We
take it that an accurate calculation ought to resolve all these features.
Thus we think for this application a mesh distribution approach based

on the integral of gradient of a single flow property such as Dwyer6




has demonstrated is not evidently optimum. A similar distribution
based on weighted gradients is certainly feasible but this would appear
to be more tedious to implement than a compromise ad hoc distribution
tied to key features of the flow structure as we have done. In the
paper we shall present curves showing the variation of relevant flow
properties across a blown shock layer and show how the simple ad hoc

distribution approach we use results in satisfactory resolution of all

properties.
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GRID GENERATION USING COARSE, SMOOTH FINITE ELEMENTS®
by Lawrence J. Dickson*
Mail Stop FS-10
Dept. of Aeronautics & Astronautics

University of Washington
Seattle, WA 98195

SUMMARY

I. Approach

The grid generation problem lends itself to the use of finite elements
and variation equations.

(1) Grids are usually generated as smooth solutions to "nice," elliptic
differential equations--just the'equations well suited to variational methods.

(2) The use of smooth finite elements gives the grid a functional
expression, which can be examined, evaluated, manipulated, and modified
naturally and cheaply.

(3) The "grid equations" are chosen for their qualitative character.
Exactitude of solutions does not matter as long as this is preserved. As a
result, extremely coarse (cheap) finite elements may generate a grid of high

quality, if the boundary conditions are well parameterized.

II. Results

I succeeded in demonstrating the following.

(1) Grid-quality solutions of a wide variety of equations--(direct)
Laplace's, biharmonic, Helmholtz, even nonlinear--can be generated to fit
reasonable functional boundary conditions in 2D using very coarse rectangular
finite elements, often 6x3 ¢2 bicubic. I even tried some "wavy" operators
(with no natural variational expression) to demonstrate the method's versa-

tility. I did not try the inverse Laplace equation, but I expect no problem

*This work was supported by the Boeing Commercial Airplane Co.



but cost.
(2) The finite element grids can be refined, locally modified and
"fine-tuned" using a simple, cheap composition-of-functions approach,

without having to solve the differential equation repeatedly.




Generation of Boundary and Boundary-Layer Fitting Grids

by

C. M. Ablow and S. Schechter
SRI International

ABSTRACT

A grid that improves the accuracy and speed of computation with a
given finite difference approximation to a boundary value problem for
a differential equation is more satisfactory than other grids. A
best method of grid generation will therefore depend on the problem

domain, the solution, and the difference scheme.

An automatic generator for the grid that minimizes the truncation
error of a given difference scheme for two-point boundary value problems
over a finite one~dimensional interval has been previously presented.*
This truncation error minimizing (TEM) generator changes the independent
variable to one in which uniformly spaced nodes fit the boundaries and
cluster in any boundary layers where the solution has a sharp variation.
The number of nodes and the complexity of the calculation are known
in advance so that the time and cost of the calculation can be estimated.
Other generators producing grids that equally distribute measures of the
solution curve arc length or length and curvature were found to be about
as accurate as the TEM generator but more easily implemented. The arc
length coordinate can also be defined as the transformation that minimizes
the sum of the squares of the derivatives of the dependent and independent
variables, a definition that readily generalizes to higher dimensions. A

Experience with two-dimensional grid generation, as applied to a
Dirichlet problem for the Poisson equation on the unit disc, is presented.

The example has an analytic solution with sharp variation across a

% .
C. M. Ablow, S. Schechter, and W. H. Zwisler, '"Node Selection for Two-
Boundary Value Problems," sumbitted to Computational Physics.



diameter of the disc. The grid is uniformly rectangular on the unit square
in the transformed coordinates. Transformations were chosen to minimize
the sum of the squares of the derivatives of the dependent variable and

of the dependent and originally’independent variables. The TEM transfor-
mation was judged too complex to be practical. The results show that

the grid fits the boundaries, clusters about the boundary layer, and

rotates into alignment with it as desired.
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CURVILINEAR GRIDS FOR SINUOUS RIVER CHANNELS

by

Frank B. Tatom, Engineering Analysis, Inc.
William R. Waldrop, Tennessee Valley Authority

S. Ray Smith, Engineering Analysis, Inc.



CENTERLINE INTRODUCTION

In order to effectively analyze the flow in sinuous river channels
a curvilinear grid system must be developed for use in the appropriate hydro-
dynamic code. The CENTERLINE program has been designed to generate a two-
dimensional grid for this purpose.

The Cartesian coordinates of a series of points along the boundaries
of the sinuous channel represent the primary input to CENTERLINE. The program
calculates the location of the river centerline, the distance downstream along
the centerline, and both radius of curvature and channel width, as a function of
such distance downstream. These parameters form the basis for the generation
of the curvilinear grid.

Based on input values for longitudinal and lateral grid spacing,
the corresponding grid system is generated and a file is created containing
the appropriate parameters for use in the associated explicit finite difference
hydrodynamic programs. Because of the option for a nonuniform grid, grid spac-
ing can be concentrated in areas containing the largest flow gradients.

For the case of sinuous channels of constant or nearly constant
width the resulting curvilinear grid is orthogonal. The grid generation
procedure also provides for dividing the overall flow area under consideration
into a series of regions connected along common boundaries. This concept of
multiple regions tends to improve computational efficiency.

For many sinuous channels the assumption of constant width is not
appropriate. In such situations CENTERLINE generates a nonorthogonal grid
which takes into account the nonuniform channel width.

The CENTERLINE program is currently operational and has been used
successfully in conjunction with both two- and three-dimensional incompressible
hydrodynamic programs. To the authors' knowledge, it is the only curvilinear
grid program currently coupled with operational incompressible hydrodynamic
programs for computing two- and three-dimensional river flows.




Basic Curvilinear Coordinate System



GOVERNING EQUATIONS FOR INCOMPRESSIBLE CURVILINEAR FLOW

CONTINUITY:

1 9 3 3
—_— | = - + — =
hxhyhz [Bx (hyhzu) + 3y (hzhxv) N (hxhyw)] 0

X-MOMENTUM :
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Z-MOMENTUM :

aw u w vV ow w oW
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at hxax hyay hzaz
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x  hoh_3y " hh 3z " Eh 3z *TF,
X Z zZ'y Z X Zy
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—_—t = 2= ¢ Y o, W d1
3 " b %x "hy 3y " b, 92
h h_h
- FbE [gi ¢ GXE o R (ayhz o
xytz LoX X X y y y



COMPUTATION OF METRIC COEFFICIENTS

FUNDAMENTAL CONSIDERATIONS:
e APPEAR IN GOVERNING EQUATIONS
e ONLY hX REQUIRES COMPUTATION
e EVALUATED FOR EACH GRID POINT
e DERIVATIVES ALSO REQUIRED

BASIC RELATIONS:

h J Rt
X Rc
h =
y 1
hZ = 1
DERIVATIVES:
3h dR
_X - .Yy _¢
3IX R 2 dx
C
ahx 1

¥y R




GENERATION OF CURVILINEAR GRIDS

DIGITIZATION OF CHANNEL
BANK COORDINATES

l

LOCATION OF
CHANNEL CENTERLINE

y

RADIUS OF
CURVATURE OF CENTERLINE

l

ORTHOGONAL
CURVILINEAR COORDINATES

'

l

NON-UNIFORM
GRID TRANSFORMATION

l

'

VARIABLE
WIDTH TRANSFORMATION

CONSTANT WIDTH
CURVILINEAR GRID

l

NON-ORTHOGONAL
CURVILINEAR COORDINATES

l

NON-UNIFORM
GRID TRANSFORMATION

l

VARIABLE WIDTH

CURVILINEAR GRID
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COMPUTATION OF RADIUS OF CURVATURE AND CHANNEL WIDTH

A DIGITIZE CARTESIAN CbORDINATES OF CHANNEL BANKS
° LOCATE GEOMETRIC CENTERLINE

. COMPUTE DISTANCE ALONG CENTERLINE, x

) COMPUTE RADIUS OF CURVATURE, Rc(x)

] COMPUTE CHANNEL WIDTH, b(x)




VARIABLE WIDTH TRANSFORMATION

BASIC TRANSFORMATION:

b = y,(x) - y(x)
X = x
Y = y/b

TRANSFORMATION DERIVATIVES:

of _ of , of .
3x - ok Tav !

of . a1
ay Y b
% f _ o°f 2F i, 3% vy, 3 v
wr - ot 2aay Y tave (V) ey Y
9% _ 2% 1
ay?2 aY2 b2
where
y' = _Ydb
b dx
yo = 2db_ Y%
b2 dx ~ b dxz



X-Y PLANE [ T

PRIMARY REGION OF INTEREST

X-Z PLANE

Non-Uniform Grid System




z (UNIFORM)

X (NON-UNIFORM)

Relationship Between Non-Uniform and Uniform Grids




TRANSFORMATION FROM NON-UNIFORM TO UNIFORM GRID

PROCEDURE :
e IDENTIFY "REGIONS OF INTEREST"
e INPUT DESIRED GRID SPACING
e GENERATE TRANSFORMATION DERIVATIVES

BASIC TRANSFORMATION:

z = z(X)

- (Y ANALYTICAL TRANSFORMATION
¥~y FUNCTIONS NOT REQUIRED
z = 2(2)

TRANSFORMATION DERIVATIVES:

39 _ 39 ox

35X - 3z aX

32g _ 3gq 3%z , 3%g (3x)?
3% = 3 Xt 3z X




SCALE IN METERS
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Curvilinear Grid for Cumberland River Segment




CURVILINEAR GRID FOR CUMBERLAND RIVER SEGMENT

o NEAR TVA GALATIN STEAM PLANT
o CONSTANT WIDTH CHANNEL
o  NON-UNIFORM GRID (x, y, & z)

® 4 CONNECTED REGIONS

e USED IN 3-D FLOW COMPUTATIONS




SCALE IN FEET

e
0 4000 8000 12000




CURVILINEAR GRID FOR TENNESSEE RIVER, WILSON RESERVOIR

e BETWEEN WHEELER AND WILSON DAMS

e VARIABLE WIDTH CHANNEL

e NON-UNIFORM GRID (x only)

e USED IN 2-D DEPTH-AVERAGED FLOW COMPUTATION




SCALE IN FEET
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Curyvilinear Grid for Green River Segment



CURVILINEAR GRID FOR GREEN RIVER SEGMENT

o NEAR PARADISE STEAM PLANT

e MODERATE SINUOSITY

e VARIABLE WIDTH

e UNIFORM GRID




SCALE IN FEET
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Curvilinear Grid for Tennessee River, Wheeler Reservoir




CURVILINEAR GRID FOR TENNESSEE RIVER, WHEELER RESERVOIR

o NEAR REDSTONE ARSENAL

e MODERATE SINUQSITY

e VARIABLE WIDTH

e UNIFORM GRID




SCALE IN FEET
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Curvilinear Grid for Little Tennessee River Segment



CURVILINEAR GRID FOR LITTLE TENNESSEE RIVER SEGMENT
e PART OF TELLICO LAKE
o HIGH SINUIOSITY
e VARIABLE WIDTH

e UNIFORM GRID
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CURVILINEAR GRID FOR TOMBIGBEE RIVER SEGMENT

PORTION OF TENNESSEE - TOMBIGBEE WATERWAY
e EXTREME SINUOSITY
o VARIABLE WIDTH

¢ UNIFORM GRID




CHANNEL BANK COORDINATES

l

CENTERLINE PROGRAM

'

2-D CURVILINEAR GRID

FLOW
BOUNDARY
CONDITIONS

l

3-D PLUME PROGRAM

'

CHANNEL
BOTTOM

LS NMTAL
CONTOUR

c
2

THERMO/HYDRODYNAMIC
SOLUTION

Integration of CENTERLINE Program with 3-D PLUME Program







NON-UNIFORM BOTTOM CONSIDERATIONS

BOTTOM PROFILES BASED ON SOUNDINGS

LONGITUDINAL AND TRANSVERSE VARIATIONS ACCEPTED

GRID SPACING LIMITS RESOLUTION OF BOTTOM SHAPE

BOTTOM PROFILES NOT USED FOR TRANSFORMATION



NOTE: VELOCITIES LESS THAN 1.5 cm/sec.
ARE SHOWN AS A 0OT

DISCHARGE /4
CHANNEL
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Velocity Vector Plot for Cumberland River Segment




CHANNEL BANK COQRDINATES

l

CENTERLINE PROGRAM

!

2-D CURVILINEAR GRID

FLOW { CHANNEL
BOUNDARY p—— 2-D PLUME PROGRAM a———— BOTTOM
CONDITIONS CONTOURS

'

HYDRODYNAMIC SOLUTION

PARTICLE l
INITIAL [ TRACK PROGRAM

POSITION l

PARTICLE TRAJECTORY

Integration of CENTERLINE Program with 2-D PLUME and TRACK Programs
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CENTERLINE SUMMARY

APPLICABLE TO SINUOUS RIVER CHANNELS

CURRENTLY OPERATIONAL

DIGITIZATION OF CHANNEL COORDINATES

CONSTANT/VARIABLE CHANNEL WIDTH OPTIONS

UNIFORM/NON-UNIFORM GRID OPTIONS

PRESENTLY COUPLED WITH 2-D AND 3-D HYDRODYNAMIC
MODELS




